Please wait a minute...
 
 
食品与发酵工业  2022, Vol. 48 Issue (15): 309-315    DOI: 10.13995/j.cnki.11-1802/ts.030031
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
益生菌对宿主肠道屏障功能的影响
王超越1,2, 韩瑨1, 吴正钧1*, 郭诚笑1, 唐月方1,2
1(光明乳业股份有限公司乳业研究院,上海乳业生物工程技术研究中心,乳业生物技术国家重点实验室,上海,200436)
2(上海海洋大学 食品学院,上海,201306)
Effect of probiotics on the host intestinal barrier
WANG Chaoyue1,2, HAN Jin1, WU Zhengjun1*, GUO Chengxiao1, TANG Yuefang1,2
1(State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co.Ltd., Shanghai 200436, China)
2(College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China)
下载:  HTML  PDF (1853KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 肠道是人体与外界环境之间最大的界面,不仅负责吸收必需的营养物质,还负责保护宿主免受各种毒素和病原体的侵害。肠屏障由机械屏障、化学屏障、菌群屏障和免疫屏障组成。肠屏障受损与多种胃肠疾病及肠外疾病的发生和发展有关。益生菌可通过多种途径来改善宿主肠道屏障功能:(1)通过促进细胞增殖、增强肠细胞之间的连接来改善机械屏障;(2)通过促进宿主对黏蛋白的表达来改善化学屏障;(3)通过竞争黏膜定殖位点、调节肠道菌群的组成来改善菌群屏障;(4)通过提升固有层中分泌免疫球蛋白A细胞的数量,提升肠腔黏液中分泌型免疫球蛋白A的水平来改善免疫屏障。文章总结了过去二十年研究益生菌改善肠道屏障功能、预防和缓解肠道疾病所取得的主要进展,强调了益生菌作为生物治疗剂在治疗肠道疾病中的菌株特异性,提出了在后续研究中可将灭活益生菌和益生菌代谢产物作为活益生菌的替代制剂用于治疗胃肠疾病的有效策略。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王超越
韩瑨
吴正钧
郭诚笑
唐月方
关键词:  益生菌  肠道屏障  调节作用  肠道疾病  生物治疗剂    
Abstract: The intestinal tract is the largest interface between the body and the environment. It is not only responsible for absorbing essential nutrients, but also for protecting the host from various toxins and pathogens. The intestinal barrier consists of mechanical barrier, chemical barrier, microbial barrier and immune barrier. Impaired intestinal barrier is related to the occurrence and development of a variety of gastrointestinal and extraintestinal diseases. Probiotics can improve the host intestinal barrier function in many ways: (1) improve the mechanical barrier by promoting cell proliferation and enhancing junctions between intestinal cells; (2) improve the chemical barrier by promoting host expression of mucin; (3) improve the microbial barrier by competing for mucosal colonization sites and adjusting the composition of intestinal flora; (4) improve the immune barrier by increasing the number of IgA secreting cells in lamina propria and the level of sIgA in intestinal mucus. This paper summarizes the main progress of probiotics in improving intestinal barrier function, preventing and alleviating intestinal diseases in the past two decades. We also emphasize the strain specificity of probiotics as biotic therapeutic agents in the treatment of intestinal diseases and propose effective strategies to use inactivated probiotics and probiotics metabolites as alternative agents of living probiotics in the treatment of gastrointestinal diseases.
Key words:  probiotics    the intestinal barrier    adjust action    intestinal disease    biotherapeutics
收稿日期:  2021-11-10      修回日期:  2021-12-06           出版日期:  2022-08-15      发布日期:  2022-09-02      期的出版日期:  2022-08-15
基金资助: 国家重点研发计划课题项目(2019YFF0217603);上海乳业生物工程技术研究中心项目(19DZ2281400)
作者简介:  第一作者:硕士研究生(吴正钧教授级高级工程师为通信作者,E-mail:wuzhengjun@brightdairy.com)
引用本文:    
王超越,韩瑨,吴正钧,等. 益生菌对宿主肠道屏障功能的影响[J]. 食品与发酵工业, 2022, 48(15): 309-315.
WANG Chaoyue,HAN Jin,WU Zhengjun,et al. Effect of probiotics on the host intestinal barrier[J]. Food and Fermentation Industries, 2022, 48(15): 309-315.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.030031  或          http://sf1970.cnif.cn/CN/Y2022/V48/I15/309
[1] MERGA Y, CAMPBELL B J, RHODES J M.Mucosal barrier, bacteria and inflammatory bowel disease:Possibilities for therapy[J].Digestive Diseases (Basel, Switzerland), 2014, 32(4):475-483.
[2] VANCAMELBEKE M, VERMEIRE S.The intestinal barrier:A fundamental role in health and disease[J].Expert Review of Gastroenterology & Hepatology, 2017, 11(9):821-834.
[3] BERMÚDEZ-HUMARÁN L G, SALINAS E, ORTIZ G G, et al.From probiotics to psychobiotics:Live beneficial bacteria which act on the brain-gut axis[J].Nutrients, 2019, 11(4):890.
[4] KOZAKOVA H, SCHWARZER M, TUCKOVA L, et al.Colonization of germ-free mice with a mixture of three Lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization[J].Cellular & Molecular Immunology, 2016, 13(2):251-262.
[5] LI X, WANG N, YIN B, et al.Effects of Lactobacillus plantarum CCFM0236 on hyperglycaemia and insulin resistance in high-fat and streptozotocin-induced type 2 diabetic mice[J].Journal of Applied Microbiology, 2016, 121(6):1 727-1 736.
[6] MAYNARD C L, ELSON C O, HATTON R D, et al.Reciprocal interactions of the intestinal microbiota and immune system[J].Nature, 2012, 489(7415):231-241.
[7] REN Z H, GUO C Y, YU S M, et al.Progress in mycotoxins affecting intestinal mucosal barrier function[J].International Journal of Molecular Sciences, 2019, 20(11):2777.
[8] GÜNTHER C, JOSENHANS C, WEHKAMP J.Crosstalk between microbiota, pathogens and the innate immune responses[J].International Journal of Medical Microbiology, 2016, 306(5):257-265.
[9] HONDA K, LITTMAN D R.The microbiota in adaptive immune homeostasis and disease[J].Nature, 2016, 535(7610):75-84.
[10] HOU Q H, YE L L, LIU H F, et al.Lactobacillus accelerates ISCs regeneration to protect the integrity of intestinal mucosa through activation of STAT3 signaling pathway induced by LPLs secretion of IL-22[J].Cell Death and Differentiation, 2018, 25(9):1 657-1 670.
[11] WU H Q, XIE S, MIAO J F, et al.Lactobacillus reuteri maintains intestinal epithelial regeneration and repairs damaged intestinal mucosa[J].Gut Microbes, 2020, 11(4):997-1 014.
[12] YI H B, WANG L, XIONG Y X, et al.Effects of Lactobacillus reuteri LR1 on the growth performance, intestinal morphology, and intestinal barrier function in weaned pigs[J].Journal of Animal Science, 2018, 96(6):2 342-2 351.
[13] CUI Y J, LIU L, DOU X X, et al.Lactobacillus reuteri ZJ617 maintains intestinal integrity via regulating tight junction, autophagy and apoptosis in mice challenged with lipopolysaccharide[J].Oncotarget, 2017, 8(44):77 489-77 499.
[14] CHEN L F, LI H Y, LI J Y, et al.Lactobacillus rhamnosus GG treatment improves intestinal permeability and modulates microbiota dysbiosis in an experimental model of sepsis[J].International Journal of Molecular Medicine, 2019, 43(3):1 139-1 148.
[15] REN C C, DOKTER-FOKKENS J, FIGUEROA LOZANO S, et al.Lactic acid bacteria may impact intestinal barrier function by modulating goblet cells[J].Molecular Nutrition & Food Research, 2018, 62(6):1700572.
[16] MARTÍN R, CHAMIGNON C, MHEDBI-HAJRI N, et al.The potential probiotic Lactobacillus rhamnosus CNCM I-3690 strain protects the intestinal barrier by stimulating both mucus production and cytoprotective response[J].Scientific Reports, 2019, 9:5398.
[17] PAPARO L, AITORO R, NOCERINO R, et al.Direct effects of fermented cow’s milk product with Lactobacillus paracasei CBAL74 on human enterocytes[J].Beneficial Microbes, 2018, 9(1):165-171.
[18] ROKANA N, SINGH R, MALLAPPA R H, et al.Modulation of intestinal barrier function to ameliorate Salmonella infection in mice by oral administration of fermented milks produced with Lactobacillus plantarum MTCC 5690:A probiotic strain of Indian gut origin[J].Journal of Medical Microbiology, 2016, 65(12):1 482-1 493.
[19] CHENG F S, PAN D, CHANG B, et al.Probiotic mixture VSL#3:An overview of basic and clinical studies in chronic diseases[J].World Journal of Clinical Cases, 2020, 8(8):1 361-1 384.
[20] LEBEER S, BRON P A, MARCO M L, et al.Identification of probiotic effector molecules:Present state and future perspectives[J].Current Opinion in Biotechnology, 2018, 49:217-223.
[21] JOHNSON-HENRY K C, HAGEN K E, GORDONPOUR M, et al.Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157:H7 adhesion to epithelial cells[J].Cellular Microbiology, 2007, 9(2):356-367.
[22] KIM S Y, SHIN K S, LEE H.Determination of primary factors with adhesive property of Lactobacillus brevis FSB-1 to rat colonic mucin[J].Food Science and Biotechnology, 2010, 19(5):1 317-1 323.
[23] WOO V, ALENGHAT T.Host-microbiota interactions:Epigenomic regulation[J].Current Opinion in Immunology, 2017, 44:52-60.
[24] WEI Z T, CUI Y Q, TIAN L, et al.Probiotic Lactiplantibacillus plantarum N-1 could prevent ethylene glycol-induced kidney stones by regulating gut microbiota and enhancing intestinal barrier function[J].The FASEB Journal, 2021, 35(11):e21937.
[25] YANG B, LI M J, WANG S, et al.Lactobacillus ruminis alleviates DSS-induced colitis by inflammatory cytokines and gut microbiota modulation[J].Foods (Basel, Switzerland), 2021, 10(6):1349.
[26] KIM S H, JEUNG W, CHOI I D, et al.Lactic acid bacteria improves Peyer’s patch cell-mediated immunoglobulin A and tight-junction expression in a destructed gut microbial environment[J].Journal of Microbiology and Biotechnology, 2016, 26(6):1 035-1 045.
[27] BJARNASON I, SISSION G, HAYEE B.A randomised, double-blind, placebo-controlled trial of a multi-strain probiotic in patients with asymptomatic ulcerative colitis and Crohn’s disease[J].Inflammopharmacology, 2019, 27(3):465-473.
[28] COSTA R F A, FERRARI M L A, BRINGER M A, et al.Characterization of mucosa-associated Escherichia coli strains isolated from Crohn’s disease patients in Brazil[J].BMC Microbiology, 2020, 20(1):178.
[29] ZAKERSKA-BANASZAK O, TOMCZAK H, GABRYEL M, et al.Dysbiosis of gut microbiota in Polish patients with ulcerative colitis:A pilot study[J].Scientific Reports, 2021, 11:2166.
[30] MOLSKA M, REGUŁA J.Potential mechanisms of probiotics action in the prevention and treatment of colorectal cancer[J].Nutrients, 2019, 11(10):2453.
[31] LIU Z, QIN H, YANG Z, et al.Randomised clinical trial:The effects of perioperative probiotic treatment on barrier function and post-operative infectious complications in colorectal cancer surgery- a double-blind study[J].Alimentary Pharmacology & Therapeutics, 2011, 33(1):50-63.
[32] SHOUKAT S.Potential anti-carcinogenic effect of probiotic and lactic acid bacteria in detoxification of benzo a pyrene:A review[J].Trends in Food Science & Technology, 2020, 99:450-459.
[33] LANDY J, RONDE E, ENGLISH N, et al.Tight junctions in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer[J].World Journal of Gastroenterology, 2016, 22(11):3 117-3 126.
[34] MARKOWIAK-KOPEĆ P, ŚLIŻEWSKA K.The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome[J].Nutrients, 2020, 12(4):1107.
[35] ELAMIN E E, MASCLEE A A, DEKKER J, et al.Short-chain fatty acids activate AMP-activated protein kinase and ameliorate ethanol-induced intestinal barrier dysfunction in caco-2 cell monolayers[J].The Journal of Nutrition, 2013, 143(12):1 872-1 881.
[36] PAPALIAGKAS V, ANOGIANAKI A, ANOGIANAKIS G, et al.The proteins and the mechanisms of apoptosis:A mini-review of the fundamentals[J].Hippokratia, 2007, 11(3):108-113.
[37] RABIEI M, ZARRINI G, MAHDAVI M.Lactobacillus casei UT1 isolated from northwest of Iran traditional curd exerts anti-proliferative and apoptosis inducing effects in human colorectal tumor HCT 116 cells[J].Advanced Pharmaceutical Bulletin, 2020, 10(1):125-129.
[38] SUN M Y, LIU W W, SONG Y L, et al.The effects of Lactobacillus plantarum-12 crude exopolysaccharides on the cell proliferation and apoptosis of human colon cancer (HT-29) cells[J].Probiotics and Antimicrobial Proteins, 2021, 13(2):413-421.
[39] LIU E, LEE H S, ARONSSON C A, et al.Risk of pediatric celiac disease according to HLA haplotype and country[J].The New England Journal of Medicine, 2014, 371(1):42-49.
[40] WITHOFF S, LI Y, JONKERS I, et al.Understanding celiac disease by genomics[J].Trends in Genetics, 2016, 32(5):295-308.
[41] VERDU E F, GALIPEAU H J, JABRI B.Novel players in coeliac disease pathogenesis:Role of the gut microbiota[J].Nature Reviews Gastroenterology & Hepatology, 2015, 12(9):497-506.
[42] OLIVARES M, NEEF A, CASTILLEJO G, et al.The HLA-DQ2 genotype selects for early intestinal microbiota composition in infants at high risk of developing coeliac disease[J].Gut, 2015, 64(3):406-417.
[43] BASCUÑÁN K A, ARAYA M, RONCORONI L, et al.Dietary gluten as a conditioning factor of the gut microbiota in celiac disease[J].Advances in Nutrition, 2019, 11(1):160-174.
[44] CAMINERO A, MCCARVILLE J L, GALIPEAU H J, et al.Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2[J].Nature Communications, 2019, 10:1198.
[45] CAMINERO A, GALIPEAU H J, MCCARVILLE J L, et al.Duodenal bacteria from patients with celiac disease and healthy subjects distinctly affect gluten breakdown and immunogenicity[J].Gastroenterology, 2016, 151(4):670-683.
[46] LAMMERS K M, LU R L, BROWNLEY J, et al.Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3[J].Gastroenterology, 2008, 135(1):194-204.
[47] MEDINA M, DE PALMA G, RIBES-KONINCKX C, et al.Bifidobacterium strains suppress in vitro the pro-inflammatory milieu triggered by the large intestinal microbiota of coeliac patients[J].Journal of Inflammation (London, England), 2008, 5:19.
[48] XU Q, LI X F, WANG E Y, et al.A cellular model for screening of lactobacilli that can enhance tight junctions[J].RSC Advances, 2016, 6(113):111 812-111 821.
[49] WANG G, XU Q, JIN X, et al.Effects of lactobacilli with different regulatory behaviours on tight junctions in mice with dextran sodium sulphate-induced colitis[J].Journal of Functional Foods, 2018, 47:107-115.
[1] 李洁, 鲁皓, 刘柳, 吴晓霞, 李成, 丁聪, 李建科. 益生菌发酵豆乳对提高结合态大豆异黄酮转化的效果[J]. 食品与发酵工业, 2022, 48(9): 91-96.
[2] 杨琦, 谢纯良, 周映君, 龚文兵, 朱作华, 许超, 彭源德. 益生菌发酵蓝莓的体外抗氧化活性分析[J]. 食品与发酵工业, 2022, 48(9): 112-116.
[3] 周立光, 杨明喆, 冯会粉, 刘艺茹, 刘蕊, 张欣, 葛媛媛, 张旭光, 刘佳奇, 程坤, 于学健, 姚粟. 复合益生菌产品菌种鉴定及活菌定量检测方法[J]. 食品与发酵工业, 2022, 48(9): 235-244.
[4] 王超, 高磊, 赵子健, 赵玉娟, 杨舸, 牛春华, 李盛钰. 益生菌附属发酵剂对切达干酪质构、游离氨基酸和短链脂肪酸的影响[J]. 食品与发酵工业, 2022, 48(8): 136-142.
[5] 李雅丽, 王默涵, 赵雯, 段素芳, 刘伟贤, 陈萌, 刘义凤, 段盛林, 洪维鍊. 益生菌与益生元组合的筛选及体外发酵特性研究[J]. 食品与发酵工业, 2022, 48(7): 50-57.
[6] 张玉双, 代安娜, 丁功涛, 罗丽, 王宝民, 刘红娜, 丁波. 牦牛乳与豆乳比例、益生菌和浓缩果汁种类对发酵饮料品质的影响[J]. 食品与发酵工业, 2022, 48(7): 97-102.
[7] 吴影, 古绍彬, 吴昊天, 周艳林, 赵丽娜, 李欣, 李璇, 郭金英. 复合益生菌剂量对小鼠生理特性和肠道菌群的影响[J]. 食品与发酵工业, 2022, 48(3): 78-84.
[8] 薛玉玲, 袁庆彬, 冯丽莉, 张栋, 康志远, 王世杰. 益生菌饮料改善甲型副伤寒沙门氏菌诱导小鼠腹泻作用研究[J]. 食品与发酵工业, 2022, 48(15): 98-101.
[9] 田培郡, 蒋娇娜, 吕天凤, 王荣, 王刚, 陈卫. 靶向肠道菌群改善失眠的研究进展及展望[J]. 食品与发酵工业, 2022, 48(15): 303-308.
[10] 卜子晨, 夏永军, 艾连中, 熊智强, 宋馨, 王光强. 益生菌中短链脂肪酸的合成途径及功能性研究[J]. 食品与发酵工业, 2022, 48(14): 286-291.
[11] 张倩, 国立东, 都晓伟. 人参的益生菌发酵及其发酵产品研究进展[J]. 食品与发酵工业, 2022, 48(13): 311-319.
[12] 陈家伦, 张万祥, 甘聃. 益生菌组合物对慢传输型便秘的改善作用[J]. 食品与发酵工业, 2022, 48(11): 95-100.
[13] 陈霞, 唐晨阳, 马昕怡, 邵童, 李晓兵, 顾瑞霞. 超微茶粉对益生菌慕斯品质及抗氧化活性的影响[J]. 食品与发酵工业, 2022, 48(10): 194-198.
[14] 史瑛, 冯欣静, 周志磊, 姬中伟, 徐岳正, 毛健. 黄酒多糖对炎症性肠病及便秘作用机制的研究进展[J]. 食品与发酵工业, 2021, 47(9): 275-283.
[15] 姜甜, 陆文伟, 崔树茂, 张灏, 赵建新. 静电喷雾干燥微囊化乳双歧杆菌BL03[J]. 食品与发酵工业, 2021, 47(7): 27-33.
[1] ZHANG Dong et al. Effect of different amounts of salt on quality of bacon[J]. Food and Fermentation Industries, 2017, 43(11): 159 .
[2] ZHOU Xin-ya et al. Effect of pH on the functional properties of rabbit myofibrillar protein[J]. Food and Fermentation Industries, 2017, 43(11): 172 .
[3] . Isolation and identification of anaerobic bacteria in the process of Maotai-flavor liquor brewing[J]. Food and Fermentation Industries, 0, (): 1 .
[4] TANG Bin,LI Da-hu,SHE Wan-wan,ZHANG Min. Effects of microwave processing on the shelf life and quality of marinating pork[J]. Food and Fermentation Industries, 2017, 43(9): 232 .
[5] YAO SU,YU Xue-jian,BAI Fei-rong,CAO Yan-hua,ZHAO Ting,ZHAI Lei,LIU Yang,GE Yuan-yuan,CHENG Kun,FENG Hui-jun,LING Kong,SHI Xiao-meng,WANG Yong-fang,ZHANG Xiao-xia,CHENG Chi. Research on the inventory of microbial species in Chinese traditional fermented foods[J]. Food and Fermentation Industries, 2017, 43(9): 238 .
[6] Liu Cen,Xu Zhinan,Shi Feng,Cen Peilin. Optimizing Fermentation of Polyglutamic Acid by Unrefined Glutamic Acid as Raw Material[J]. Food and Fermentation Industries, 2006, 32(5): 9 .
[7] . [J]. Food and Fermentation Industries, 2003, 29(2): 93 .
[8] . [J]. Food and Fermentation Industries, 2003, 29(4): 88 .
[9] Lin Feng,Ma Yong,Xu Yaguang,Jin Zhentao,Ren Wei,Cai Muyi. Study on the Quality Evaluation of Food-derived Oiigopeptides Based on the Molecular Weight Distribution[J]. Food and Fermentation Industries, 2008, 34(9): 128 .
[10] Tian Huaixiang,Yi Yujia,Zheng Xiaoping,Yu Liang. Identification of Key Aroma Components in Home-made Cheese by Aroma Extract Dilution Analysis[J]. Food and Fermentation Industries, 2008, 34(10): 132 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn