Please wait a minute...
 
 
食品与发酵工业  2022, Vol. 48 Issue (15): 316-324    DOI: 10.13995/j.cnki.11-1802/ts.030126
  综述与专题评论 本期目录 | 过刊浏览 | 高级检索 |
白酒酿造中适产高级醇酿酒酵母菌株选育研究进展
李园子, 田伏锦, 王凤寰, 廖永红*
(北京工商大学 轻工科学技术学院,北京,100048)
Research progress on the selection of Saccharomyces cerevisiae strains with appropriate high alcohols production in Baijiu brewing
LI Yuanzi, TIAN Fujin, WANG Fenghuan, LIAO Yonghong*
(School of Light Industry, Beijing Technology and Business University, Beijing 100048, China)
下载:  HTML  PDF (2089KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着时代的发展,白酒的品质成了大众日益关注的话题,这就要求酒既有优质的风味口感,又不对人体造成伤害。高级醇是白酒中最重要的风味物质之一,主要由酿酒酵母生成。适量的高级醇可赋予酒体醇香、柔和的口感,但当高级醇含量超过一定限度时,不但会降低酒体的口感,还会有损饮用者的身体健康。因此,白酒中高级醇种类及含量的调控对改善酒体品质有着重要意义。文章介绍了酿酒酵母中高级醇的形成机制,重点总结了高级醇代谢调控的关键基因以及白酒酿造中适产高级醇酿酒酵母菌株选育研究进展,以期为白酒中高级醇的精细化调控及适产高级醇酿酒酵母菌株的选育提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李园子
田伏锦
王凤寰
廖永红
关键词:  白酒  高级醇  酿酒酵母  诱变育种  基因工程育种    
Abstract: With the development of era, the quality of Baijiu has become an increasingly hot topic among the public who demands both premium flavor and harmlessness to health. High alcohols are one of the most important flavor substances in Baijiu and mainly produced by Saccharomyces cerevisiae. Moderate content of high alcohols can make the Baijiu taste mellow and soft; excessive content of high alcohols not only downgrades the taste of Baijiu, but also makes the Baijiu unhealthy. Therefore, regulating the composition and content of higher alcohols are of great significance to improve the quality of Baijiu. This review introduces the formation mechanism of high alcohols in S. cerevisiae, and largely reviews the key regulatory genes of higher alcohols and the research progress on the selection of S. cerevisiae with appropriate high alcohols production to provide a reference not only for the accurate regulation of high alcohol, but also for the selection of S. cerevisiae with appropriate high alcohols in Baijiu.
Key words:  Baijiu    higher alcohols    Saccharomyces cerevisiae    mutation breeding    genetic engineering breeding
收稿日期:  2021-11-23      修回日期:  2021-12-26           出版日期:  2022-08-15      发布日期:  2022-09-02      期的出版日期:  2022-08-15
基金资助: 国家自然科学基金项目(31871749);“十三五”国家重点研发计划子课题(2016YFD0400502-O2)
作者简介:  第一作者:博士,讲师(廖永红教授为通信作者,E-mail:liaoyh@th.btbu.edu.cn)
引用本文:    
李园子,田伏锦,王凤寰,等. 白酒酿造中适产高级醇酿酒酵母菌株选育研究进展[J]. 食品与发酵工业, 2022, 48(15): 316-324.
LI Yuanzi,TIAN Fujin,WANG Fenghuan,et al. Research progress on the selection of Saccharomyces cerevisiae strains with appropriate high alcohols production in Baijiu brewing[J]. Food and Fermentation Industries, 2022, 48(15): 316-324.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.030126  或          http://sf1970.cnif.cn/CN/Y2022/V48/I15/316
[1] 孙宝国, 黄明泉, 王娟.白酒风味化学与健康功效研究进展[J].中国食品学报, 2021, 21(5):1-13.SUN B G, HUANG M Q, WANG J.Research progress on flavor chemistry and healthy function of Baijiu[J].Journal of Chinese Institute of Food Science and Technology, 2021, 21(5):1-13.
[2] PIRES E J, TEIXEIRA J A, BRÁNYIK T, et al.Yeast:The soul of beer’s aroma--A review of flavour-active esters and higher alcohols produced by the brewing yeast[J].Applied Microbiology and Biotechnology, 2014, 98(5):1 937-1 949.
[3] 苟静瑜, 贾智勇, 闫宗科, 等.降低白酒中高级醇含量的研究进展[J].酿酒, 2016, 43(4):25-29.GOU J Y, JIA Z Y, YAN Z K, et al.Research progress in decreasing the contents of higher alcohols in Baijiu(liquor)[J].Liquor Making, 2016, 43(4):25-29.
[4] LONGO R, CAREW A, SAWYER S, et al.A review on the aroma composition of Vitis vinifera L.Pinot noir wines:Origins and influencing factors[J].Critical Reviews in Food Science and Nutrition, 2021, 61(10):1 589-1 604.
[5] FANG C, DU H, JIA W, et al.Compositional differences and similarities between typical Chinese Baijiu and western liquor as revealed by mass spectrometry-based metabolomics[J].Metabolites, 2018, 9(1):2.
[6] 孙中贯, 刘琳, 王亚平, 等.酿酒酵母高级醇代谢研究进展[J].生物工程学报, 2021, 37(2):429-447.SUN Z G, LIU L, WANG Y P, et al.Higher alcohols metabolism by Saccharomyces cerevisiae:A mini review[J].Chinese Journal of Biotechnology, 2021, 37(2):429-447.
[7] EL-DALATONY M M, SAHA S, GOVINDWAR S P, et al.Biological conversion of amino acids to higher alcohols[J].Trends in Biotechnology, 2019, 37(8):855-869.
[8] CHOI Y J, LEE J, JANG Y S, et al.Metabolic engineering of microorganisms for the production of higher alcohols[J].mBio, 2014, 5(5):e01524-e01514.
[9] CHEN E C H.The relative contribution of Ehrlich and biosynthetic pathways to the formation of fusel alcohols[J].Journal of the American Society of Brewing Chemists, 1978, 36(1):39-43.
[10] LEI H J, ZHENG L Y, WANG C X, et al.Effects of worts treated with proteases on the assimilation of free amino acids and fermentation performance of lager yeast[J].International Journal of Food Microbiology, 2013, 161(2):76-83.
[11] 秦伟帅. 葡萄酒酵母遗传操作构建高级醇低产菌株的研究[D].泰安:山东农业大学, 2013.QIN W S.Construction of wine yeast strain with low-yield higher alcohols by genetic manipulation[D].Taian:Shandong Agricultural University, 2013.
[12] MCGOVERN P E, ZHANG J Z, TANG J G, et al.Fermented beverages of pre- and proto-historic China[J].Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(51):17 593-17 598.
[13] KUMARI S, KUMAR M, GAUR N A, et al.Multiple roles of ABC transporters in yeast[J].Fungal Genetics and Biology, 2021, 150:103550.
[14] GRAUSLUND M, DIDION T, KIELLAND-BRANDT M C, et al.BAP2, a gene encoding a permease for branched-chain amino acids in Saccharomyces cerevisiae[J].Biochimica et Biophysica Acta, 1995, 1269(3):275-280.
[15] KODAMA Y, OMURA F, MIYAJIMA K, et al.Control of higher alcohol production by manipulation of the BAP2 gene in brewing yeast[J].Journal of the American Society of Brewing Chemists, 2001, 59(4):157-162.
[16] DIDION T, GRAUSLUND M, KIELLAND-BRANDT M C, et al.Amino acids induce expression of BAP2, a branched-chain amino acid permease gene in Saccharomyces cerevisiae[J].Journal of Bacteriology, 1996, 178(7):2 025-2 029.
[17] DONATON M C V, HOLSBEEKS I, LAGATIE O, et al.The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae[J].Molecular Microbiology, 2003, 50(3):911-929.
[18] SAIKI R K, SCHARF S, FALOONA F, et al.Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell Anemia[J].Science, 1985, 230(4732):1 350-1 354.
[19] LI P, GE J L, GAO Y Y, et al.A seamless gene deletion method and its application for regulation of higher alcohols and ester in Baijiu Saccharomyces cerevisiae[J].Biomed Research International, 2019:6723849.
[20] COLÓN M, HERNÁNDEZ F, LÓPEZ K, et al.Saccharomyces cerevisiae Bat1 and Bat2 aminotransferases have functionally diverged from the ancestral-like Kluyveromyces lactis orthologous enzyme[J].PLoS One, 2011, 6(1):e16099.
[21] YOSHIMOTO H, FUKUSHIGE T, YONEZAWA T, et al.Genetic and physiological analysis of branched-chain alcohols and isoamyl acetate production in Saccharomyces cerevisiae[J].Applied Microbiology and Biotechnology, 2002, 59(4-5):501-508.
[22] URRESTARAZU A, VISSERS S, IRAQUI I, et al.Phenylalanine- and tyrosine-auxotrophic mutants of Saccharomyces cerevisiae impaired in transamination[J].Molecular and General Genetics, 1998, 257(2):230-237.
[23] YIN S, ZHOU H, XIAO X, et al.Improving 2-phenylethanol production via Ehrlich pathway using genetic engineered Saccharomyces cerevisiae strains[J].Current Microbiology, 2015, 70(5):762-767.
[24] IRAQUI I, VISSERS S, CARTIAUX M, et al.Characterisation of Saccharomyces cerevisiae ARO8 and ARO9 genes encoding aromatic aminotransferases I and II reveals a new aminotransferase subfamily[J].Molecular and General Genetics, 1998, 257(2):238-248.
[25] SHEN L, NISHIMURA Y, MATSUDA F, et al.Overexpressing enzymes of the Ehrlich pathway and deleting genes of the competing pathway in Saccharomyces cerevisiae for increasing 2-phenylethanol production from glucose[J].Journal of Bioscience and Bioengineering, 2016, 122(1):34-39.
[26] BAICHWAL V R, CUNNINGHAM T S, GATZEK P R, et al.Leucine biosynthesis in yeast:Identification of two genes (LEU4, LEU5) that affect α-isopropylmalate synthase activity and evidence that LEU1 and LEU2 gene expression is controlled by α-isopropylmalate and the product of a regulatory gene[J].Current Genetics, 1983, 7(5):369-377.
[27] HOLMBERG S, PETERSEN J G.Regulation of isoleucine-valine biosynthesis in Saccharomyces cerevisiae[J].Current Genetics, 1988, 13(3):207-217.
[28] 佐一含, 朱旭东, 陈叶福, 等.LEU2基因敲除对工业啤酒酵母高级醇生成量的影响[J].中国酿造, 2011, 30(3):27-30.ZUO Y H, ZHU X D, CHEN Y F, et al.Effect of LEU2 gene knockout on higher alcohols production in industrial Saccharomyces cerevisiae[J].China Brewing, 2011, 30(3):27-30.
[29] AVALOS J L, FINK G R, STEPHANOPOULOS G.Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols[J].Nature Biotechnology, 2013, 31(4):335-341.
[30] KONDO T, TEZUKA H, ISHII J, et al.Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae[J].Journal of Biotechnology, 2012, 159(1-2):32-37.
[31] ZHENG N, JIANG S, HE Y H, et al.Production of low-alcohol Huangjiu with improved acidity and reduced levels of higher alcohols by fermentation with scarless ALD6 overexpression yeast[J].Food Chemistry, 2020, 321:126691.
[32] THURSTON P A, TAYLOR R, AHVENAINEN J.Effects of linoleic acid supplements on the synthesis by yeast of lipids and acetate esters[J].Journal of the Institute of Brewing, 1981, 87(2):92-95.
[33] VERSTREPEN K J, VAN LAERE S D M, VANDERHAEGEN B M P, et al.Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters[J].Applied and Environmental Microbiology, 2003, 69(9):5 228-5 237.
[34] SCHREIER P.Flavor composition of wines:A review[J].Critical Reviews in Food Science and Nutrition, 1979, 12(1):59-111.
[35] ZHANG J W, ZHANG C Y, DAI L H, et al.Effects of overexpression of the alcohol acetyltransferase-encoding gene ATF1 and disruption of the esterase-encoding gene IAH1 on the flavour profiles of Chinese yellow rice wine[J].International Journal of Food Science and Technology, 2012, 47(12):2 590-2 596.
[36] DONG J, XU H Y, ZHAO L B, et al.Enhanced acetate ester production of Chinese liquor yeast by overexpressing ATF1 through precise and seamless insertion of PGK1 promoter[J].Journal of Industrial Microbiology and Biotechnology, 2014, 41(12):1 823-1 828.
[37] PROCOPIO S, QIAN F, BECKER T.Function and regulation of yeast genes involved in higher alcohol and ester metabolism during beverage fermentation[J].European Food Research and Technology, 2011, 233(5):721-729.
[38] 王鹏银, 郝欣, 郭学武, 等.离子注入诱变选育低产高级醇酿酒酵母菌株[J].酿酒科技, 2008(2):17-21;26.WANG P Y, HAO X, GUO X W, et al.Screening of Saccharomyces cerevisiae strains with low yield of higher alcohols by ion implantation[J].Liquor-Making Science & Technology, 2008(2):17-21;26.
[39] 王国正, 吴群, 徐岩.低产高级醇酿酒酵母突变菌株的差异蛋白组分析及高级醇合成相关蛋白的差异表达[J].微生物学通报, 2015, 42(12):2 407-2 416.WANG G Z, WU Q, XU Y.Comparative intracellular proteomics analysis of a low higher alcohols producing Saccharomyces cerevisiae mutant and different expression of higher alcohols synthesis related proteins[J].Microbiology China, 2015, 42(12):2 407-2 416.
[40] 张翠英, 张艳英, 齐亚楠, 等.低产高级醇酿酒酵母工程菌株在小曲酒酿造中的应用[J].酿酒科技, 2013, (7):62-64.ZHANG C Y, ZHANG Y Y, QI Y N, et al.Application of a Saccharomyces cerevisiae engineering strain with low-yield of higher alcohols in the production of Xiaoqu liquor[J].Liquor-Making Science&Technology, 2013, (7):62-64.
[41] LI W, CUI D Y, WANG J H, et al.Overexpression of different alcohol acetyltransferase genes with BAT2 deletion in Saccharomyces cerevisiae affects acetate esters and higher alcohols[J].European Food Research and Technology, 2018, 244(3):555-564.
[42] WANG Y P, WEI X Q, GUO X W, et al.Effect of the deletion of genes related to amino acid metabolism on the production of higher alcohols by Saccharomyces cerevisiae[J].BioMed Research International, 2020, 2020:6802512.
[43] 石钰, 陈叶福, 肖冬光.LEU1基因缺失对酿酒酵母高级醇生成量的影响[J].酿酒科技, 2015, (2):12-16.SHI Y, CHEN Y F, XIAO D G.Effects of LEU1 gene deletion on higher alcohols yield of S.cerevisiae[J].Liquor-Making Science&Technology, 2015, (2):12-16.
[44] LI W, CHEN S J, WANG J H, et al.Genetic engineering to alter carbon flux for various higher alcohol productions by Saccharomyces cerevisiae for Chinese Baijiu fermentation[J].Applied Microbiology and Biotechnology, 2018, 102(4):1 783-1 795.
[45] YUAN J F, MISHRA P, CHING C B.Engineering the leucine biosynthetic pathway for isoamyl alcohol overproduction in Saccharomyces cerevisiae[J].Journal of Industrial Microbiology and Biotechnology, 2017, 44(1):107-117.
[46] LI W, WANG J H, ZHANG C Y, et al.Regulation of Saccharomyces cerevisiae genetic engineering on the production of acetate esters and higher alcohols during Chinese Baijiu fermentation[J].Journal of Industrial Microbiology and Biotechnology, 2017, 44(6):949-960.
[47] CUI D Y, ZHANG Y, XU J, et al.PGK1 promoter library for the regulation of acetate ester production in Saccharomyces cerevisiae during Chinese Baijiu fermentation[J].Journal of Agricultural and Food Chemistry, 2018, 66(28):7 417-7 427.
[48] KRUIS A J, LEVISSON M, MARS A E, et al.Ethyl acetate production by the elusive alcohol acetyltransferase from yeast[J].Metabolic Engineering, 2017, 41:92-101.
[49] MA L J, HUANG S Y, DU L P, et al.Reduced production of higher alcohols by Saccharomyces cerevisiae in red wine fermentation by simultaneously overexpressing BAT1 and deleting BAT2[J].Journal of Agricultural and Food Chemistry, 2017, 65(32):6 936-6 942.
[50] 郝欣, 肖冬光, 张翠英.酿酒酵母类丙酮酸脱羧酶基因缺失对高级醇生成量的影响[J].微生物学报, 2010, 50(8):1 030-1 035.HAO X, XIAO D G,ZHANG C Y.Effect of YDL080C gene deletion on higher alcohols production in Saccharomyces cerevisiae haploids[J].Acta Microbiologica Sinica, 2010, 50(8):1 030-1 035.
[1] 申鹏森, 田争福, 田晓菊, 周桂珍, 张惠玲. 一株降解氨基甲酸乙酯酿酒酵母菌的筛选及鉴定[J]. 食品与发酵工业, 2022, 48(9): 20-25.
[2] 赵欣怡, 甄攀, 赵鑫锐, 韩英, 李江华, 王军燕, 堵国成, 陈坚. 清香型白酒立醅期酒醅中主体酸和细菌菌群结构动态解析[J]. 食品与发酵工业, 2022, 48(9): 26-33.
[3] 孙细珍, 熊亚青, 杜佳炜, 钱全全, 姚贤泽. 不同品种高粱小曲白酒感官表征及重要风味物质对比分析[J]. 食品与发酵工业, 2022, 48(9): 34-40.
[4] 李群, 林斌, 唐洁, 江威, 朱丽萍, 杨强, 刘源才, 陈申习. 清香型小曲白酒酿造中酵母资源解析及其耐受性能研究[J]. 食品与发酵工业, 2022, 48(9): 41-47.
[5] 袁国亿, 何宇淋, 王春晓, 邱树毅. 米酒风味品质形成相关因素的研究进展[J]. 食品与发酵工业, 2022, 48(9): 286-294.
[6] 朱丽萍, 杨强, 江威, 李群, 林斌, 唐洁, 陈申习. 清香型小曲白酒霉菌菌群解析与酶活特性研究[J]. 食品与发酵工业, 2022, 48(7): 70-77.
[7] 王昆, 庹先国, 张贵宇, 罗林, 罗琪, 刘杰. 清香型酒醅水分、酸度和淀粉含量的在线预测[J]. 食品与发酵工业, 2022, 48(7): 85-90.
[8] 刘玲玲, 李冰宁, 杨梦奇, 杨明, 武彦文. 高灵敏测定市售饮料酒中的矿物油污染物[J]. 食品与发酵工业, 2022, 48(7): 258-263.
[9] 卓俊纳, 吴卫宇, 何霜, 赵金松. 基于ICP-MS结合化学计量学的不同品牌酱香型白酒鉴别方法[J]. 食品与发酵工业, 2022, 48(7): 269-275.
[10] 张媛, 廖卫芳, 缪礼鸿, 杨团元, 刘蒲临, 杨一斌. 采用实时荧光定量PCR法检测白酒酿造系统中的重要功能菌株Lactobacillus jinshani[J]. 食品与发酵工业, 2022, 48(6): 270-275.
[11] 冯鹏鹏, 周钰涵, 高杏, 高滢, 郭立芸, 葛峻伶, 林良才, 张翠英. 低产高级醇工业上面发酵酵母的选育[J]. 食品与发酵工业, 2022, 48(5): 28-23.
[12] 王金梦, 范文来, 徐岩, 杨金玉, 谢国排, 孙露露, 薛锡佳. 中试规模壶式二次蒸馏对白酒中氨基甲酸乙酯和氰化物以及原酒品质影响[J]. 食品与发酵工业, 2022, 48(5): 53-57.
[13] 刘林培, 管秀琼, 何明雄, 刘春, 蔡北川, 胡国全, 吴波, 王彦伟, 陈晓茹. 利用好氧堆肥法协同处理多种酒业固废的原料配比[J]. 食品与发酵工业, 2022, 48(5): 116-122.
[14] 卫春会, 郑自强, 李浩, 任志强, 黄治国, 邓杰, 董玲. 浓香型白酒酒醅发酵过程中风味物质时空差异分析[J]. 食品与发酵工业, 2022, 48(5): 240-246.
[15] 闫兴敏, 姜娇, 高辉, 白稳红, 王平来, 刘延琳. 优良本土酿酒酵母的酿酒特性及产香能力初析[J]. 食品与发酵工业, 2022, 48(4): 62-68.
[1] PENG Zhi-fu et all . Comparison of odor-active compounds in distillates of five grains between first time and second time distillation using AEDA[J]. Food and Fermentation Industries, 2017, 43(11): 1 -8 .
[2] LIU Wen-ying et al. Protective effect of wheat oligopeptides and glutamine against gastrointestinal mucosa damage in rats[J]. Food and Fermentation Industries, 2017, 43(11): 51 -57 .
[3] FAN Zi-wei et al. Study on the physicochemical properties ofYunnansoft rice starch[J]. Food and Fermentation Industries, 2017, 43(11): 87 .
[4] . Isolation and identification of anaerobic bacteria in the process of Maotai-flavor liquor brewing[J]. Food and Fermentation Industries, 0, (): 1 .
[5] YU Qing-lin et al. Fermentation optimization of recombinant Yarrowia lipolytica for its efficient succinic acid production[J]. Food and Fermentation Industries, 0, (): 1 .
[6] Zheng Dan et al.. The inhibiting effect of flavonoid “astilbin” on pancreatic lipase[J]. Food and Fermentation Industries, 0, (): 1 .
[7] ZHANG Xue-qin et al.. Optimization of preparation of flavor based on material by microbial composite fermentation of Antarctic krill[J]. Food and Fermentation Industries, 0, (): 1 .
[8] . Effect of Protein on Quality of Chinese Rice Wine #br# [J]. Food and Fermentation Industries, 0, (): 1 .
[9] Wang Yongde,Li Hang,Zhao Guohua,Chen Zongdao. Purification and Characterization of Yolk Anti-E.Coli Antibodies[J]. Food and Fermentation Industries, 2005, 31(11): 26 .
[10] YAO SU,YU Xue-jian,BAI Fei-rong,CAO Yan-hua,ZHAO Ting,ZHAI Lei,LIU Yang,GE Yuan-yuan,CHENG Kun,FENG Hui-jun,LING Kong,SHI Xiao-meng,WANG Yong-fang,ZHANG Xiao-xia,CHENG Chi. Research on the inventory of microbial species in Chinese traditional fermented foods[J]. Food and Fermentation Industries, 2017, 43(9): 238 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn