Please wait a minute...
 
 
食品与发酵工业  2022, Vol. 48 Issue (12): 1-8    DOI: 10.13995/j.cnki.11-1802/ts.030184
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
苏云金芽孢杆菌IX-01胞外多糖的体外益生特性
高泽鑫, 孙武, 胥聆铭, 张蕾蕾, 朱莉, 詹晓北*
(江南大学 生物工程学院,江苏 无锡,214122)
Probiotic properties of Bacillus thuringiensis IX-01 extracellular polysaccharide in vitro
GAO Zexin, SUN Wu, XU Lingming, ZHANG Leilei, ZHU Li, ZHAN Xiaobei*
(School of Biotechnology, Jiangnan University, Wuxi 214122, China)
下载:  HTML  PDF (3137KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 微生物胞外多糖具有多种有益特性,是潜在的益生元。胞外多糖BPS-2是从苏云金芽孢杆菌IX-01通过高密度发酵后提取出来的。BPS-2是一种由氨基半乳糖、阿拉伯糖、氨基葡萄糖、葡萄糖和甘露糖组成的杂多糖,摩尔比为5.53∶1.77∶4.74∶3.24∶1,其多糖分子质量为27.96 kDa。该研究通过四唑盐试验法对BPS-2的细胞毒性进行了评价,在验证了其多糖无细胞毒性的前提下,采集了10位健康人粪便微生物,探究BPS-2对人体粪便菌群组成及代谢产物的影响。在体外进行48 h的静态发酵时,与阴性对照相比,BPS-2明显增强了短链脂肪酸的产生(P<0.05),乙酸、丙酸、丁酸和总短链脂肪酸的浓度分别达到(31.59±0.73)、(10.82±0.65)、(8.18±0.2)和(50.59±1.54)mmol/L。通过16S rRNA基因测序表明BPS-2可以显著增加有益菌属Parabacteroides的相对丰度,并减少有害微生物菌群MegamonasFusobacterium的相对丰度,进而参与改善宿主肠道微生物区系的结构。这是关于苏云金芽孢杆菌生产的BPS-2体外益生特性的首次报告,为其在食品工业中的应用提供了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高泽鑫
孙武
胥聆铭
张蕾蕾
朱莉
詹晓北
关键词:  胞外多糖  细胞毒性  短链脂肪酸  肠道微生物  益生特性    
Abstract: Microbial extracellular polysaccharides possess various beneficial properties and are potential prebiotic. The extracellular polysaccharide BPS-2 was extracted from Bacillus thuringiensis IX-01 by high-density cellular fermentation. BPS-2 is a heteropolysaccharide composed of aminogalactose, arabinose, glucosamine, glucose and mannose with a molar percentage of 5.53∶1.77∶4.74∶3.24∶1. It has a polysaccharide molecular mass of 27.96 kDa. MTT assay was used to evaluate the cytotoxicity of BPS-2, and microorganisms from 10 healthy human fecal were obtained to investigate the effect of BPS-2 on the composition and metabolites of human fecal flora under the premise that its polysaccharide was not cytotoxic. During 48 h of static fermentation in vitro, BPS-2 significantly enhanced the production of short-chain fatty acids compared to the negative control (P<0.05), with concentrations of acetic acid, propionic acid, butyric acid and total short-chain fatty acids reaching (31.59±0.73), (10.82±0.65), (8.18±0.2), (50.59±1.54) and (50.59±1.54) mmol/L, respectively. Sequencing of 16S rRNA gene showed that BPS-2 significantly increased the relative abundance of the beneficial genus Parabacteroides and reduced the relative abundance of the harmful microflora Megamonas and Fusobacterium, which in turn were involved in improving the structure of the host gut microbiota. This is the first report on in vitro probiotic properties of BPS-2 produced by B. thuringiensis, which can provide a basis for its application in the food industry.
Key words:  extracellular polysaccharides    cytotoxicity    short-chain fatty acids    gut microbiota    probiotic properties
收稿日期:  2021-11-23      修回日期:  2021-12-10           出版日期:  2022-06-25      发布日期:  2022-07-15      期的出版日期:  2022-06-25
基金资助: 国家重点研发计划(2018YFC1604105-5);国家重点研发计划(2021YFC2101100);江苏省研究生科研与实践创新计划项目(KYCX20_1827)
作者简介:  第一作者:博士研究生(詹晓北教授为通信作者,E-mail:xbzhan@yahoo.com)
引用本文:    
高泽鑫,孙武,胥聆铭,等. 苏云金芽孢杆菌IX-01胞外多糖的体外益生特性[J]. 食品与发酵工业, 2022, 48(12): 1-8.
GAO Zexin,SUN Wu,XU Lingming,et al. Probiotic properties of Bacillus thuringiensis IX-01 extracellular polysaccharide in vitro[J]. Food and Fermentation Industries, 2022, 48(12): 1-8.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.030184  或          http://sf1970.cnif.cn/CN/Y2022/V48/I12/1
[1] SUTHERLAND I W. Novel and established applications of microbial polysaccharides[J]. Trends Biotechnol, 1998, 16(1): 41-46.
[2] MALAKA R, ABUSTAM E, BACO S.Antitumor activity (in-vitro) of extracellular polysaccharide produced by ropy Lactobacillus delbrueckii ssp. bulgaicus isolated from traditional fermented milk[J].International Journal of Chemistry and Pharmaceutical Science, 2016, 4:246-249.
[3] SILVA L A, LOPES NETO J H P, CARDARELLI H R, et al.Exopolysaccharides produced by Lactobacillus plantarum:Technological properties, biological activity, and potential application in the food industry[J].Annals of Microbiology, 2019, 69(4):321-328.
[4] ZEIDAN A A, POULSEN V K, JANZEN T, et al.Polysaccharide production by lactic acid bacteria:From genes to industrial applications[J].FEMS Microbiology Reviews, 2017, 41(S1):S168-S200.
[5] CUTTING S M.Bacillus probiotics[J].Food Microbiology, 2011, 28(2):214-220.
[6] CRICKMORE N, ZEIGLER D R, FEITELSON J, et al.Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins[J].Microbiology and Molecular Biology Reviews, 1998, 62(3):807-813.
[7] LIU W, LI X Q, ZHAO Z L, et al.Effect of chitooligosaccharides on human gut microbiota and antiglycation[J].Carbohydrate Polymers, 2020, 242:116413.
[8] DI T, CHEN G J, SUN Y, et al.In vitro digestion by saliva, simulated gastric and small intestinal juices and fermentation by human fecal microbiota of sulfated polysaccharides from gracilaria rubra[J].Journal of Functional Foods, 2018, 40:18-27.
[9] SCHROEDER B O, BÄCKHED F.Signals from the gut microbiota to distant organs in physiology and disease[J].Nature Medicine, 2016, 22(10):1 079-1 089.
[10] ZHU Y, MAO Y Q, CHEN H, et al.Apigenin promotes apoptosis, inhibits invasion and induces cell cycle arrest of T24 human bladder cancer cells[J].Cancer Cell International, 2013, 13(1):54.
[11] SCHULTHESS J, PANDEY S, CAPITANI M, et al.The short chain fatty acid butyrate imprints an antimicrobial program in macrophages[J].Immunity, 2019, 50(2):432-445.
[12] AL-LAHHAM S H, PEPPELENBOSCH M P, ROELOFSEN H, et al.Biological effects of propionic acid in humans;metabolism, potential applications and underlying mechanisms[J].Biochimica et Biophysica Acta, 2010, 1 801(11):1 175-1 183.
[13] CRESCI G A, GLUECK B, MCMULLEN M R, et al.Prophylactic tributyrin treatment mitigates chronic-binge ethanol-induced intestinal barrier and liver injury[J].Journal of Gastroenterology and Hepatology, 2017, 32(9):1 587-1 597.
[14] MORRIS D L.Quantitative determination of carbohydrates with dreywood′s anthrone reagent[J].Science (Washington), 1948, 107(2 775):254-255.
[15] BRADFORD M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry, 1976, 72(1-2):248-254.
[16] RAMAMOORTHY S, GNANAKAN A,LAKSHMANA S S, et al.Structural characterization and anticancer activity of extracellular polysaccharides from ascidian symbiotic bacterium Bacillus thuringiensis[J].Carbohydrate Polymers, 2018, 190:113-120.
[17] WANG M L, GENG L L, XUE B, et al.Structure characteristics and function of a novel extracellular polysaccharide from Bacillus thuringiensis strain 4D19[J].International Journal of Biological Macromolecules, 2021, 189:956-964.
[18] CARLSON J L, ERICKSON J M, HESS J M, et al.Prebiotic dietary fiber and gut health:Comparing the in vitro fermentations of beta-glucan, inulin and xylooligosaccharide[J].Nutrients, 2017, 9(12):1 361.
[19] KOH A, DE VADDER F, KOVATCHEVA-DATCHARY P, et al.From dietary fiber to host physiology:Short-chain fatty acids as key bacterial metabolites[J].Cell, 2016, 165(6):1 332-1 345.
[20] WANG R X, LEE J S, CAMPBELL E L, et al.Microbiota-derived butyrate dynamically regulates intestinal homeostasis through regulation of actin-associated protein synaptopodin[J].Proceedings of the National Academy of Sciences, 2020, 117(21):11 648-11 657.
[21] LAPARRA J M, SANZ Y.Interactions of gut microbiota with functional food components and nutraceuticals[J].Pharmacological Research, 2010, 61(3):219-225.
[22] LIU C, DU P, GUO Y H, et al.Extraction, characterization of aloe polysaccharides and the in-depth analysis of its prebiotic effects on mice gut microbiota[J].Carbohydrate Polymers, 2021, 261(11):117874.
[23] JOHNSON E L, HEAVER S L, WALTERS W A, et al.Microbiome and metabolic disease:Revisiting the bacterial phylum Bacteroidetes[J].Journal of Molecular Medicine, 2017, 95(1):1-8.
[24] YACHIDA S, MIZUTANI S, SHIROMA H, et al.Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer[J].Nature Medicine, 2019, 25(6):968-976.
[25] MULLISH B H, MCDONALD J A K, PECHLIVANIS A, et al.Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Clostridioides difficile infection[J].Gut, 2019, 68(10):1 791-1 800.
[26] LEI Y Y, TANG L, LIU S, et al.Parabacteroides produces acetate to alleviate heparanase-exacerbated acute pancreatitis through reducing neutrophil infiltration[J].Microbiome, 2021, 9(1):115.
[1] 谷懿寰, 江正强, 刘军, 杨绍青. 奶豆腐中戊糖片球菌的分离鉴定及其产胞外多糖的益生活性[J]. 食品与发酵工业, 2022, 48(9): 84-90.
[2] 刘聪秀, 宋佳佳, 王洪伟, 张玉, 索化夷. 发酵乳杆菌LFQ153胞外多糖对RAW264.7巨噬细胞氧化损伤的保护作用[J]. 食品与发酵工业, 2022, 48(8): 1-8.
[3] 徐静静, 孙武, 詹晓北, 张洪涛, 朱莉, 高敏杰. 黄原胶寡糖对体外肠道菌群及其代谢产物的影响[J]. 食品与发酵工业, 2022, 48(7): 36-42.
[4] 周晴晴, 李理, 俞赟霞, 李言郡, 余腾斐, 张妍, 陈苏. 高产胞外多糖嗜热链球菌的筛选及其直投式发酵剂的应用[J]. 食品与发酵工业, 2022, 48(5): 81-88.
[5] 王琳琳, 杨树荣, 王嘉良, 王刚, 张灏, 赵建新, 陈卫. 副干酪乳杆菌LPC-F通过促进Cajal间质细胞增殖缓解便秘[J]. 食品与发酵工业, 2022, 48(4): 1-9.
[6] 卫津宇, 陈东, 李程程, 史仲平. 产功能性胞外多糖及DL-乳酸的植物乳杆菌的高效发酵和应用[J]. 食品与发酵工业, 2022, 48(3): 20-29.
[7] 朱广素, 赵建新, 张灏, 陈卫, 王刚. 短双歧杆菌对Aβ1-42导致的阿尔兹海默症小鼠肠道菌群及代谢物的影响[J]. 食品与发酵工业, 2022, 48(3): 70-77.
[8] 颜准, 吴朝君, 张小兰, 李婉麒, 梁娟, 陈紫颖, 艾连中, 张汇. 动物双歧杆菌乳亚种M8胞外多糖的分离纯化和分子特征[J]. 食品与发酵工业, 2022, 48(2): 33-39.
[9] 周雯, 韩丽娟, 马娜娜, 漆莹, 岳庆明, 索南卓玛, 郭妍, 院珍珍. 黄刺浆果不同组分多糖理化性质及生物活性的比较[J]. 食品与发酵工业, 2022, 48(2): 189-197.
[10] 吴阿敏, 张富新, 吴珊, 何晨. 植物乳杆菌对头孢氨苄耐药性进化及益生性状稳定性评价[J]. 食品与发酵工业, 2022, 48(12): 90-96.
[11] 蚁硕钊, 李啟彬, 房志家, 徐春厚, 刘颖. 海洋源降解核苷乳酸菌的体外筛选、鉴定及其益生特性研究[J]. 食品与发酵工业, 2022, 48(11): 87-94.
[12] 郑越, 段涛, 宋丹, 乔琳, 陈丽仙, 王薇薇, 宾石玉. 六株植物乳杆菌的益生特性研究[J]. 食品与发酵工业, 2022, 48(10): 119-125.
[13] 任春霖, 董红丽, 王风芹, 宋安东. 低聚木糖生产技术及其对动物益生作用研究进展[J]. 食品与发酵工业, 2021, 47(9): 293-298.
[14] 鲁朝凤, 黄佳琦, 黄勇桦, 杨士花, 陈壁, 杨明静, 李永强. 青稞膳食纤维和多酚对肠道微生物的协同调节作用[J]. 食品与发酵工业, 2021, 47(8): 6-13.
[15] 朱慧越, 邹仁英, 许梦舒, 王琳琳, 田培郡, 陈卫, 王刚. 短链脂肪酸-酰化淀粉对小鼠抑郁样行为的缓解及机制[J]. 食品与发酵工业, 2021, 47(6): 26-33.
[1] WU Xiang-yi et al . Effect of yak milk casein hydrolysates on protein carbonyl content and activity of antioxidant enzymes of oxidative damaged HepG2 cells induced by H2O2[J]. Food and Fermentation Industries, 2017, 43(11): 34 -38 .
[2] ZHANG Dong et al. Effect of different amounts of salt on quality of bacon[J]. Food and Fermentation Industries, 2017, 43(11): 159 .
[3] ZHANG Dong et al. Researchprogressonreducing sodium chlorideinmeatproducts[J]. Food and Fermentation Industries, 2017, 43(11): 238 .
[4] LIU Yan-yun et al. Research and development prospects of Northwest traditional taste food Jiangshui[J]. Food and Fermentation Industries, 2017, 43(11): 262 .
[5] . Isolation and identification of anaerobic bacteria in the process of Maotai-flavor liquor brewing[J]. Food and Fermentation Industries, 0, (): 1 .
[6] YU Qing-lin et al. Fermentation optimization of recombinant Yarrowia lipolytica for its efficient succinic acid production[J]. Food and Fermentation Industries, 0, (): 1 .
[7] Zheng Dan et al.. The inhibiting effect of flavonoid “astilbin” on pancreatic lipase[J]. Food and Fermentation Industries, 0, (): 1 .
[8] ZHANG Xue-qin et al.. Optimization of preparation of flavor based on material by microbial composite fermentation of Antarctic krill[J]. Food and Fermentation Industries, 0, (): 1 .
[9] . Effect of Protein on Quality of Chinese Rice Wine #br# [J]. Food and Fermentation Industries, 0, (): 1 .
[10] . [J]. Food and Fermentation Industries, 2004, 30(6): 58 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn