Please wait a minute...
 
 
食品与发酵工业  2022, Vol. 48 Issue (15): 33-40    DOI: 10.13995/j.cnki.11-1802/ts.030555
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
糖耗速率对浓香型白酒发酵过程异戊醇合成的影响
梁清文1,2,3,4, 方芳1,2,3,4*
1(工业生物技术教育部重点实验室(江南大学),江苏 无锡,214122)
2(江南大学 未来食品科学中心,江苏 无锡,214122)
3(江南大学 食品合成生物技术教育部工程研究中心,江苏 无锡,214122)
4(江南大学 江苏省食品合成生物技术工程研究中心,江苏 无锡,214122)
Effects of sugar consumption rate on iso-amyl alcoholsynthesis during strong flavor Baijiu fermentation
LIANG Qingwen1,2,3,4, FANG Fang1,2,3,4*
1(Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China)
2(Science Center for Future Foods, Jiangnan University, Wuxi 214122, China)
3(State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China)
4(Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Wuxi 214122, China)
下载:  HTML  PDF (2578KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 高级醇是白酒的风味物质之一,其含量过高影响白酒饮用的舒适度。通过考察酵母种类与初始菌浓度、发酵起始温度、大曲酶活力等因素对浓香型白酒发酵过程异戊醇合成的影响,为研究减控策略提供参考。结果表明,初始酵母种类与数量、发酵起始温度、大曲酶活力均对浓香型白酒发酵过程异戊醇合成阶段还原糖的消耗、酿酒酵母的增殖和异戊醇合成水平有影响。预估表观耗糖速率变小,酿酒酵母增殖倍数减少,异戊醇合成水平也相应降低。酿酒酵母是影响白酒发酵过程异戊醇合成的主要酵母,当发酵起始酿酒酵母数量为5×107 CFU/g时,酒醅中的异戊醇比对照减少22.9%;酒醅入池发酵起始温度的降低也可显著减少异戊醇含量,降幅最高为22.6%;此外,通过降低大曲糖化酶活力也能有效减少发酵过程异戊醇的合成。该研究揭示了浓香型白酒发酵过程酿酒酵母增殖和还原糖消耗与异戊醇合成水平之间的关系,为阐明白酒发酵过程异戊醇合成机制和研究异戊醇减控策略奠定理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁清文
方芳
关键词:  异戊醇  浓香型白酒  表观耗糖速率  酿酒酵母  发酵起始温度  糖化酶活力    
Abstract: Higher alcohols are flavor substances in Baijiu, which has critical influence on Baijiu quality, but they will affect the comfort of drinking with high content. The effects of yeast species and initial concentration, initial fermentation temperature, Daqu enzyme activity and other factors on iso-amyl alcohol synthesis during strong aroma Baijiu fermentation were investigated to provide reference for the study of control and reduction strategies. The results showed that the initial yeast species and concentration, the initial fermentation temperature and the enzyme activity of Daqu affected the consumption of reducing sugar, the proliferation of Saccharomyces cerevisiae and the synthesis level of iso-amyl alcohol in strong flavor Baijiu fermentation. Estimated apparent sugar consumption rate decreased with the multiplication rate of S. cerevisiae decreased, and the synthesis level of iso-amyl alcohol decreased accordingly. In contrast, changing the initial concentration of Pichia, the second most abundant yeast in this fermentation system,had no effect on its own proliferation, estimated apparent sugar consumption rate or decreasing iso-amyl alcohol synthesis. Therefore, it can be speculated that S. cerevisiae was the main yeast affecting the synthesis of iso-amyl alcohol in Baijiu fermentation process. When the number of S. cerevisiae was 5×107 CFU/g at the beginning of fermentation, the iso-amyl alcohol in fermented grains was reduced by 22.9% compared with that of the control. By setting different initial fermentation temperatures between 18 ℃ to 30 ℃ and using temperatures programming in fermentation process, we found that decreasing of the initial fermentation temperature of fermented grains to 18℃ could also significantly reduce the content of iso-amyl alcohol, with a maximum decrease of 22.6% compared to beginning the fermentation at 26 ℃. In addition, the content of iso-amyl alcohol in fermentation process can be effectively reduced by reducing glucoamylase activity of Daqu with a maximum decrease of 13.3%. It is noteworthy that the amount of ethanol synthesis was not lowered by using the regulating and control methods above. Using a simple indicator, estimated apparent sugar consumption rate, to characterize the effects of various factors on the fermentation process, the relationship between S. cerevisiae proliferation, reducing sugar consumption and iso-amyl alcohol synthesis level during strong flavor Baijiu fermentation was revealed in this study, which could lay a theoretical foundation for elucidating the synthesis mechanism of iso-amyl alcohol during Baijiu fermentation and studying the control and reduction strategies of iso-amyl alcohol.
Key words:  iso-amyl alcohol    strong flavor Baijiu    apparent sugar consumption rate    Saccharomyces cerevisiae    initial fermentation temperature    glucoamylase activity
收稿日期:  2021-12-23      修回日期:  2022-01-19           出版日期:  2022-08-15      发布日期:  2022-09-02      期的出版日期:  2022-08-15
基金资助: 国家自然科学基金项目(31771955);国家重点研发计划项目(2018YFC1604102);国家重点研发计划项目(2017YFC1600405)
作者简介:  第一作者:硕士研究生(方芳研究员为通信作者,E-mail:ffang@jiangnan.edu.cn)
引用本文:    
梁清文,方芳. 糖耗速率对浓香型白酒发酵过程异戊醇合成的影响[J]. 食品与发酵工业, 2022, 48(15): 33-40.
LIANG Qingwen,FANG Fang. Effects of sugar consumption rate on iso-amyl alcoholsynthesis during strong flavor Baijiu fermentation[J]. Food and Fermentation Industries, 2022, 48(15): 33-40.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.030555  或          http://sf1970.cnif.cn/CN/Y2022/V48/I15/33
[1] 格绒泽仁, 皇甫洁, 韩兴林, 等.浓香型白酒饮后不适感关键高级醇类物质关联性判定新方法[J].食品与发酵工业, 2019, 45(14):191-195.GERONG Z R, HUANGFU J, HAN X L, et al.A method for determining associations between drinking discomforts and key higher alcohols in strong-aroma Baijiu[J].Food and Fermentation Industries, 2019, 45(14):191-195.
[2] SUN H L, LIU S P, MAO J Q, et al.New insights into the impacts of Huangjiu compontents on intoxication[J].Food Chemistry, 2020, 317:126420.
[3] 田源. 浓香型白酒发酵过程高级醇形成机制解析[D].无锡:江南大学, 2019.TIAN Y.The mechanism of higher alcohols formation during Chinese Luzhou-flavor liquor fermentation[D].Wuxi:Jiangnan university, 2019.
[4] 游玲, 周荣清, 谭壹, 等.Kazachstania属酵母在浓香型白酒糟醅中的分布特征及发酵功能[J].生物技术通报, 2021, 37(6):108-116.YOU L, ZHOU R Q, TAN Y, et al.Distribution and function of Kazachstania yeast in the fermentation of strong flavor Baijiu[J].Biotechnology Bulletin, 2021, 37(6):108-116.
[5] 杨建刚, 苏畅, 窦晓, 等.泸型酒发酵过程中酵母菌演替规律及其对部分风味分子形成的影响[J].食品科学, 2018, 39(18):166-172.YANG J G, SU C, DOU X, et al.Analysis of yeast succession during the fermentation of Luzhou-flavor liquor and its effect on the formation of selected flavor components[J].Food Science, 2018, 39(18):166-172.
[6] LI P, LI T, ZHANG C Y, et al.Effect of ILV2 deletion and ILV3 or/and ILV5 overexpression in Saccharomyces uvarum on diacetyl and higher alcohols metabolism during wine fermentation[J].European Food Research and Technology, 2020, 246(3):563-572.
[7] 杨青. 构建基因THI3和LEU2缺失的低异戊醇工程程酵母及其应用研究[D].广州:华南理工大学, 2017.YANG Q.Constructing low isopentanol Saccharomyces cerevisiae with knockout gene THI3 and LEU2 and its application[D].Guangzhou:South China University of Technology, 2017.
[8] 张翠英, 张艳英, 齐亚楠,等.低产高级醇酿酒酵母工程菌株在小曲酒酿造中的应用[J].酿酒科技, 2013(7):62-64.ZHANG C Y, ZHANG Y Y, QI Y N, et al.Application of a Saccharomyces cerevisiae engineering strain with low-yield of higher alcohols in the production of Xiaoqu liquor[J].Liquor-making Science & Technology, 2013(7):62-64.
[9] LI W, WANG J H, ZHANG C Y, et al.Regulation of Saccharomyces cerevisiae genetic engineering on the production of acetate esters and higher alcohols during Chinese Baijiu fermentation[J].Journal of Industrial Microbiology and Biotechnology, 2017, 44(6):949-960.
[10] 郑玲艳, 杨建刚, 郭学武, 等.低产异戊醇清酒酵母菌株的选育[J].酿酒科技, 2008(10):17-19.ZHENG L Y, YANG J G, GUO X W, et al.Breeding selection of sake yeast strains with low-yield of isoamyl alcohol[J].Liquor-Making Science & Technology, 2008(10):17-19.
[11] 王鹏银, 郝欣, 郭学武, 等.离子注入诱变选育低产高级醇酿酒酵母菌株[J].酿酒科技, 2008(2):17-21;26.WANG P Y, HAO X, GUO X W, et al.Screening of Saccharomyces cerevisiae strains with low yield of higher alcohols by ion implantation[J].Liquor-Making Science & Technology, 2008(2):17-21;26.
[12] ZHEN D, LYU M, CHEN M B, et al.Effects of a mutated yeast plus addition of sucrose and nitrogen on the total higher alcohol levels of a plum wine fermentation[J].Journal of the Institute of Brewing, 2014, 120(4):571-574.
[13] 季方, 吴建峰, 袁小转, 等.一种低产异戊醇、高产β-苯乙醇的酵母及其分离培养方法和应用:CN110205253B[P].2020-08-14.JI F, WU J F, YUAN X Z, et al.The invention relates to a low-yield-isoamyl alcohol and high-β-benzyl-ethanol yeast its separation and culture method and application:China, CN110205253B[P].2020-08-14.
[14] 李秋志, 刘姣, 王国明, 等.不同添加量高产酯低产高级醇酵母菌在芝麻香白酒酿造中的作用[J].现代食品, 2019(10):56-60.LI Q Z, LIU J, WANG G M, et al.Different dosage high ester low yield higher alcohol yeast application in sesame liquor brewing[J].Modern Food, 2019(10):56-60.
[15] 简晓平, 简章容, 余丽辰, 等.1株Wickerhamomyces酵母菌对浓香型白酒发酵的影响[J].酿酒科技, 2017(9):33-38.JIAN X P, JIAN Z R, YU L C, et al.Effects of a Wickerhamomyces strain on the fermentation of Nongxiang Baijiu[J].Liquor-making Science & Technology, 2017(9):33-38.
[16] 孙金旭. 酱香型白酒发酵过程中异戊醇的控制研究[J].现代食品科技, 2012, 28(11):1 541-1 544.SUN J X.Methods for isoamyl alcohol control in wine[J].Modern Food Science and Technology, 2012, 28(11):1 541-1 544.
[17] WANG Y P, SUN Z G, ZHANG C Y, et al.Comparative transcriptome analysis reveals the key regulatory genes for higher alcohol formation by yeast at different α-amino nitrogen concentrations[J].Food Microbiology, 2021, 95:103713.
[18] ZHONG X F, WANG A L, ZHANG Y B, et al.Reducing higher alcohols by nitrogen compensation during fermentation of Chinese rice wine[J].Food Science and Biotechnology, 2019, 29(6):805-816.
[19] LIU S P, MA D L, LI Z H, et al.Assimilable nitrogen reduces the higher alcohols content of Huangjiu[J].Food Control, 2021, 121:107660.
[20] 王亚平, 邢爽, 孙中贯, 等.液态法大曲酒发酵过程中高级醇影响因素的研究[J].天津科技大学学报, 2019, 34(5):39-44.WANG Y P, XING S, SUN Z G, et al.Factors influencing higher alcohol in the liquid fermentation of Daqu Baijiu[J].Journal of Tianjin University of Science & Technology, 2019, 34(5):39-44.
[21] 罗惠波, 苟云凌, 饶家权, 等.酶制剂对浓香型白酒发酵过程中高级醇生成的影响[J].四川理工学院学报(自然科学版), 2011, 24(2):186-189.LUO H B, GOU Y L, RAO J Q, et al.Effect of enzymes on the formation of higher alcohols in liquor[J].Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2011, 24(2):186-189.
[22] 应静, 游玲, 邱树毅, 等.温度对浓香型白酒发酵的影响[J].中国酿造, 2018, 37(8):75-81.YING J, YOU L, QIU S Y, et al.Effect of temperature on fermentation of strong-flavor Baijiu[J].China Brewing, 2018, 37(8):75-81.
[23] 陈耀, 王德良, 王旭亮, 等.酒醅孔隙度对白酒风味物质的影响[J].酿酒科技, 2016(2):23-26;31.CHEN Y, WANG D L, WANG X L, et al.Effects of fermented grains porosity on the flavoring substances of Baijiu[J].Liquor-making Science & Technology, 2016(2):23-26;31.
[24] JIANG J, LIU Y C, LI H H, et al.Modeling and regulation of higher alcohol production through the combined effects of the C/N ratio and microbial interaction[J].Journal of Agricultural and Food Chemistry, 2019, 67(38):10 694-10 701.
[25] 杨贵明, 蒋爱华, 薛秋生.用DNS光度法测定还原糖的条件研究[J].安徽农业科学, 2006, 34(14):3 258;3 264.YANG G M, JIANG A H, XUE Q S.Study on the determination factor of reduced sugar with DNS spectrophotometry[J].Journal of Anhui Agricultural Sciences, 2006, 34(14):3 258;3 264.
[26] 袁文杰, 孔亮, 孜力汗, 等.高效液相色谱法测定克鲁维酵母菊芋发酵液中的乙醇,糖和有机酸类代谢成分[J].分析化学, 2009, 37(6):850-854.YUAN W J, KONG L, ZI L H, et al.Simultaneous determination of ethanol, sugar and organic acids in Kluveromyces marxious broth by high performance liquid chromatography-ultraviolet/refractive index detector[J].Chinese Journal of Analytical Chemistry, 2009, 37(6):850-854.
[27] 田源, 孔小勇, 方芳.浓香型白酒发酵过程微生物合成正丙醇途径解析[J].微生物学报, 2020, 60(7):1 421-1 432.TIAN Y, KONG X Y, FANG F.Microbial n-propanol synthesis during Luzhou-flavor liquor fermentation[J].Acta Microbiologica Sinica, 2020, 60(7):1 421-1 432.
[28] HAZELWOOD L A, DARAN J M, VAN MARIS A J A, et al.The Ehrlich pathway for fusel alcohol production:A century of research on Saccharomyces cerevisiae metabolism[J].Applied and Environmental Microbiology, 2008, 74(8):2 259-2 266.
[29] 孙中贯, 刘琳, 王亚平, 等.酿酒酵母高级醇代谢研究进展[J].生物工程学报, 2021, 37(2):429-447.SUN Z G, LIU L, WANG Y P, et al.Higher alcohols metabolism by Saccharomyces cerevisiae:A mini review[J].Chinese Journal of Biotechnology, 2021, 37(2):429-447.
[30] 蒲岚, 李璐, 邱树毅, 等.发酵温度调控对浓香型白酒主要香味成分生成的影响[J].食品与发酵工业, 2011, 37(7):126-129.PU L, LI L, QIU S Y, et al.Effects on main flavor compounds forming by temperature controlling in strong-flavor Chinese liquor fermentation[J].Food and Fermentation Industries, 2011, 37(7):126-129.
[31] SUN Z G, WANG M Q, WANG Y P, et al.Identification by comparative transcriptomics of core regulatory genes for higher alcohol production in a top-fermenting yeast at different temperatures in beer fermentation[J].Applied Microbiology and Biotechnology, 2019, 103(12):4 917-4 929.
[32] GUAN T W, LIN Y J, CHEN K B, et al.Physicochemical factors affecting microbiota dynamics during traditional solid-state fermentation of Chinese strong-flavor Baijiu[J].Frontiers in Microbiology, 2020, 11:2 090.
[33] 高银涛, 何璇, 余博文, 等.白酒固态双边发酵糖化机理及其对发酵过程的影响[J].食品与发酵工业, 2021, 47(13):92-97.GAO Y T, HE X, YU B W, et al.Saccharification mechanism of solid-state fermentation of Chinese Baijiu and its influence on fermentation process[J].Food and Fermentation Industries, 2021, 47(13):92-97.
[1] 申鹏森, 田争福, 田晓菊, 周桂珍, 张惠玲. 一株降解氨基甲酸乙酯酿酒酵母菌的筛选及鉴定[J]. 食品与发酵工业, 2022, 48(9): 20-25.
[2] 冯鹏鹏, 周钰涵, 高杏, 高滢, 郭立芸, 葛峻伶, 林良才, 张翠英. 低产高级醇工业上面发酵酵母的选育[J]. 食品与发酵工业, 2022, 48(5): 28-23.
[3] 卫春会, 郑自强, 李浩, 任志强, 黄治国, 邓杰, 董玲. 浓香型白酒酒醅发酵过程中风味物质时空差异分析[J]. 食品与发酵工业, 2022, 48(5): 240-246.
[4] 闫兴敏, 姜娇, 高辉, 白稳红, 王平来, 刘延琳. 优良本土酿酒酵母的酿酒特性及产香能力初析[J]. 食品与发酵工业, 2022, 48(4): 62-68.
[5] 王伟雄, 胡少坤, 古丽米热·祖努纳, 黎进雪, 王妍凌, 吕泽, 杜展成, 张海军, 武运. 常压室温等离子体诱变选育生香型Kluyveromyces marxianus[J]. 食品与发酵工业, 2022, 48(4): 102-108.
[6] 高维锡, 李钢, 李娜. 植物乳杆菌与酿酒酵母共发酵对薏仁米发酵液品质及抗氧化活性的增效性[J]. 食品与发酵工业, 2022, 48(4): 193-199.
[7] 邓衍宏, 刘庆国, 汪虎, 应汉杰, 陈勇, 李义. 棉纤维固定化酵母发酵产乙醇研究[J]. 食品与发酵工业, 2022, 48(4): 213-217.
[8] 田诗宇, 范婉宁, 王芳. 添加酿酒酵母的切达干酪风味研究[J]. 食品与发酵工业, 2022, 48(3): 198-204.
[9] 王均华, 付闻文, 李由然, 朱惠霖, 徐沙, 石贵阳, 张梁, 丁重阳, 顾正华. 酿酒酵母关键节点基因缺损对法尼烯合成的影响[J]. 食品与发酵工业, 2022, 48(2): 1-7.
[10] 赵雪梅, 伍时华, 龙秀锋, 易弋, 曾令杰, 袁瑞祥. 丁香醛对酿酒酵母乙醇发酵过程和理化特性的影响[J]. 食品与发酵工业, 2022, 48(16): 188-195.
[11] 陈翔宇, 李雪松, 徐娟, 李蒙蒙, 林丽军, 陆利霞, 刘元建, 熊晓辉. 促进酿酒酵母在溶液体系中分散的研究[J]. 食品与发酵工业, 2022, 48(15): 102-109.
[12] 李园子, 田伏锦, 王凤寰, 廖永红. 白酒酿造中适产高级醇酿酒酵母菌株选育研究进展[J]. 食品与发酵工业, 2022, 48(15): 316-324.
[13] 高娉娉, 朱亚同, 刘宇, 张馨文, 梁丽红, 康文军, 王婧. 高产酸性β-葡萄糖苷酶的优良本土酵母菌株筛选、鉴定及酶学性质分析[J]. 食品与发酵工业, 2022, 48(12): 30-36.
[14] 张秀洁, 郭全友, 杨絮, 郑尧, 郑昇阳, 李丹. 源自香糟大黄鱼的红酒糟优势菌特性及发酵能力研究[J]. 食品与发酵工业, 2022, 48(11): 50-57.
[15] 任元元, 李宇航, 孟资宽, 张鑫, 邹育, 王拥军. 协同发酵生产的鲜湿米粉及其品质特性和风味研究[J]. 食品与发酵工业, 2022, 48(11): 185-191.
[1] . Isolation and identification of anaerobic bacteria in the process of Maotai-flavor liquor brewing[J]. Food and Fermentation Industries, 0, (): 1 .
[2] Zheng Dan et al.. The inhibiting effect of flavonoid “astilbin” on pancreatic lipase[J]. Food and Fermentation Industries, 0, (): 1 .
[3] . Effect of Protein on Quality of Chinese Rice Wine #br# [J]. Food and Fermentation Industries, 0, (): 1 .
[4] YAO SU,YU Xue-jian,BAI Fei-rong,CAO Yan-hua,ZHAO Ting,ZHAI Lei,LIU Yang,GE Yuan-yuan,CHENG Kun,FENG Hui-jun,LING Kong,SHI Xiao-meng,WANG Yong-fang,ZHANG Xiao-xia,CHENG Chi. Research on the inventory of microbial species in Chinese traditional fermented foods[J]. Food and Fermentation Industries, 2017, 43(9): 238 .
[5] Lin Feng,Ma Yong,Xu Yaguang,Jin Zhentao,Ren Wei,Cai Muyi. Study on the Quality Evaluation of Food-derived Oiigopeptides Based on the Molecular Weight Distribution[J]. Food and Fermentation Industries, 2008, 34(9): 128 .
[6] Pan Hongyang,Wang Shuying,Mo Haizhen. Determination of Seleno-amino Acids in Enriched-selenium Dehydrated Brassica Chinensis by RHPLC[J]. Food and Fermentation Industries, 2008, 34(10): 141 .
[7] Chen Mo,Wang Zhiwei,Hu Changying,Wu Xiyang,Wang Pingli. Rapid Evaluating of Antimicrobial Activity of Vanillin with the Microplate Reader in 96-cell Plate[J]. Food and Fermentation Industries, 2009, 35(5): 63 .
[8] . Recent advance and application of metaproteomics[J]. Food and Fermentation Industries, 2016, 42(5): 259 .
[9] CUI Shu-mao,ZHAO Jian-xin,CHEN Wei,ZHANG Hao. Effect of acids produced by metabolizing carbohydrate of protectants on viability of Lactobacillus during freezing[J]. Food and Fermentation Industries, 2017, 43(3): 14 .
[10] SHEN Fang-lin,HUANG Shuang-cheng,HOU Peng-chen,GENG An-li,RUAN Wen-quan. A high effective autonomous replicative sequence in Saccharomyces cerevisiae[J]. Food and Fermentation Industries, 2017, 43(3): 20 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn