Please wait a minute...
 
 
食品与发酵工业  2022, Vol. 48 Issue (15): 9-17    DOI: 10.13995/j.cnki.11-1802/ts.031128
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
信号肽及发酵条件优化促进胶原蛋白在谷氨酸棒杆菌中分泌表达
齐静静, 范炳森, 张萌*, 许菲*
(江南大学 生物工程学院,工业生物技术教育部重点实验室,江苏 无锡,214122)
Optimization of signal peptide and fermentation conditions to promote collagen secretion in Corynebacterium glutamicum
QI Jingjing, FAN Bingsen, ZHANG Meng*, XU Fei*
(Key Lab of Ministry of Education of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, China)
下载:  HTML  PDF (2781KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 胶原蛋白独特的三股螺旋结构,使其具有良好的力学性能和生物相容性,在生物医学材料等方面有广泛应用。利用微生物表达重组胶原蛋白,具有发酵周期短、成本低、便于遗传操作等优点,近些年发展迅速,但分泌带有三股螺旋结构的重组胶原蛋白仍是研究的难点。该研究以来源于化脓性链球菌的胶原蛋白V-B为对象,搭建了谷氨酸棒杆菌分泌表达重组胶原蛋白的平台。在重组胶原蛋白V-B前端引入6种不同信号肽(CspB、PorB、Cg1514、CgR0949、Cg2052或TorA),构建重组表达载体,并转入食品级表达宿主谷氨酸棒状杆菌Corynebacterium glutamicum ATCC 13032中,结果显示PorB信号肽介导的分泌效果最好。此外,对PorB信号肽介导的分泌表达进行培养基、起始诱导菌浓度、诱导时长、IPTG浓度、溶氧的优化,最终胶原域B在摇瓶水平产量达到30 mg/L,是优化前的3倍,并通过圆二色谱表征,验证其正确折叠为三股螺旋。该研究为重组胶原蛋白在谷氨酸棒杆菌中的高效分泌表达奠定了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
齐静静
范炳森
张萌
许菲
关键词:  重组胶原蛋白  谷氨酸棒杆菌  信号肽  分泌表达  发酵条件优化    
Abstract: Collagen is the most abundant structural protein in human body and a considerable component of cytoplasmic matrix. Collagen, attributed to its unique triple helix structure, has good mechanical properties and high biocompatibility, thereby being widely used in many applications, such as biomedicine, tissue engineering and cosmetics. The use of microorganisms to express recombinant collagen has the advantages of short fermentation cycle, low cost, and convenient genetic manipulation, which has been developed rapidly in recent years. However, the secretion of recombinant collagen with a triple helix structure remains a challenge.In this study, a platform for the secretion of recombinant collagen by Corynebacterium glutamicum was established. Six different signal peptides (Cg1514, Cg2052, CgR0949, CspB, PorB or TorA) were fused to the N-terminal of V-B derived from Streptococcus pyogenes and ligated into pXMJ19 to construct a recombinant expression vector. The recombinant plasmid was transferred into the food-grade expression host C. glutamicum ATCC 13032 to construct six recombinant strains. The secretion efficiency of these signal peptides was compared, and the expression conditions were optimized. The results showed that PorB was the most efficient signal peptide for V-B secretion. At the same time, the yields of collagen mediated by the Sec-dependent signal peptides Cg1514, CspB and PorB were higher than those of CgR0949 and TorA, which were the Tat-dependent signal peptides. This is consistent with the latest research result that C. glutamicum mainly secretes spider silk protein in a Sec-dependent manner. Therefore, it is speculated that the Sec-dependent secretion pathway is conducive to the secretion of fibrous protein such as collagen and spider silk protein.In addition, the culture medium, initial induction OD600, induction duration, IPTG concentration, and dissolved oxygen were optimized for the secretory expression mediated by PorB signal peptide. The optimal expression conditions were as follows: cultured in 500 mL baffled shake flask with 50 mL culture medium 1(20 g/L glucose, 20 g/L corn steep powder, 20 g/L (NH4)2SO4, 1 g/L KH2PO4, 1 g/L K2HPO4, 0.25 g/L MgSO4, and 42 g/L MOPS [3-(N-Morpholinyl) propanesulfonic acid sodium salt]), with an initial induction OD600 of 6 and induced by 0.5 mmol/L IPTG for 40 h. It was found that dissolved oxygen was the key factor affecting collagen production at the flask level, which provided guidance for further scale-up test at industrial production level. Subsequently, the supernatant was taken for affinity purification, followed by trypsin digestion. The V domain was cut into small peptides, while the collagen domain B was not digested due to its rigid triple helix structure when it’s correctly folded. After desalting, lyophilization and weighing, the final secretion yield of collagen domain B at the shake flask level reached 30 mg/L, which was 3 times that before optimization. The secondary structure was characterized by circular dichroism showing that it was correctly folded into a typical triple helix structure of collagen. The melting curve was scanned at 225 nm from 10 ℃ to 70 ℃ and the melting temperature (Tm) value of collagen domain B was calculated to be 25.82 ℃, which was close to that reported previously.The Corynebacterium glutamicum expression and secretion system established in this study is of food safety grade, and can efficiently secrete collagen with a triple helix structure, which provides a new host choice for the recombinant expression of collagen. Further, this development can provide solutions and theoretical basis for the production of recombinant collagen as well as other functional biomaterial proteins for the application in biomedicine and tissue engineering.
Key words:  recombinant collagen    Corynebacterium glutamicum    signal peptide    secretion    expression optimization
收稿日期:  2022-02-11      修回日期:  2022-03-11           出版日期:  2022-08-15      发布日期:  2022-09-02      期的出版日期:  2022-08-15
基金资助: 国家自然科学基金项目(22078129);中央高校基本科研业务费专项资金(JUSRP121014)
作者简介:  第一作者:硕士研究生(张萌助理研究员和许菲教授为共同通信作者,E-mail:mzhang@jiangnan.edu.cn;feixu@jiangnan.edu.cn)
引用本文:    
齐静静,范炳森,张萌,等. 信号肽及发酵条件优化促进胶原蛋白在谷氨酸棒杆菌中分泌表达[J]. 食品与发酵工业, 2022, 48(15): 9-17.
QI Jingjing,FAN Bingsen,ZHANG Meng,et al. Optimization of signal peptide and fermentation conditions to promote collagen secretion in Corynebacterium glutamicum[J]. Food and Fermentation Industries, 2022, 48(15): 9-17.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.031128  或          http://sf1970.cnif.cn/CN/Y2022/V48/I15/9
[1] SHOULDERS M D, RAINES R T.Collagen structure and stability[J].Annual Review of Biochemistry, 2009, 78(1):929-958.
[2] BRODSKY B, RAMSHAW J A M.The collagen triple-helix structure[J].Matrix Biology, 1997, 15(8-9):545-554.
[3] IRASTORZA A, ZARANDONA I, ANDONEGI M, et al.The versatility of collagen and chitosan:From food to biomedical applications[J].Food Hydrocolloids, 2021, 116:106633.
[4] BÁEZ J, OLSEN D, POLAREK J W.Recombinant microbial systems for the production of human collagen and gelatin[J].Applied Microbiology and Biotechnology, 2005, 69(3):245-252.
[5] XU Y, KEENE D R, BUJNICKI J M, et al.Streptococcal Scl1 and Scl2 proteins form collagen-like triple helices[J].Journal of Biological Chemistry, 2002, 277(30):27 312-27 318.
[6] YU Z X, BRODSKY B, INOUYE M.Dissecting a bacterial collagen domain from Streptococcus pyogenes:Sequence and length-dependent variations in triple helix stability and folding[J].Journal of Biological Chemistry, 2011, 286(21):18 960-18 968.
[7] PENG Y Y, HOWELL L, STOICHEVSKA V, et al.Towards scalable production of a collagen-like protein from Streptococcus pyogenes for biomedical applications[J].Microbial Cell Factories, 2012, 11(1):146.
[8] GUO J Q, LUO Y E, FAN D D, et al.Analysis of metabolic products by response surface methodology for production of human-like collagen II[J].Chinese Journal of Chemical Engineering, 2010, 18(5):830-836.
[9] JIA Q L, LUO Y E, FAN D D, et al.The different roles of chaperone teams on over-expression of human-like collagen in recombinant Escherichia coli[J].Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(6):2 843-2 850.
[10] 常海燕, 范代娣, 骆艳娥, 等.重组大肠杆菌高密度发酵生产类人胶原蛋白Ⅱ条件优化[J].微生物学通报, 2009, 36(6):870-874.CHANG H Y, FAN D D, LUO Y E, et al.Optimization of recombinant E.coli high-density fermentation for expressing human-like collagen Ⅱ[J].Microbiology, 2009, 36(6):870-874.
[11] 刘斌. 巴氏毕赤酵母基因工程菌高密度发酵表达重组人源胶原蛋白[D].南京:南京理工大学, 2012.LIU B.High-density fermentation of genetically engineered Pichia pastoris expressing recombinant human-source collagen[D].Nanjing:Nanjing University of Science and Technology, 2012.
[12] LI L B, FAN D D, MA X X, et al.High-level secretory expression and purification of unhydroxylated human collagen α1(III) chain in Pichia pastoris GS115[J].Biotechnology and Applied Biochemistry, 2015, 62(4):467-475.
[13] PAKKANEN O, HÄMÄLÄINEN E R, KIVIRIKKO K I, et al.Assembly of stable human type i and iii collagen molecules from hydroxylated recombinant chains in the yeast Pichia pastoris:Effect of an engineered c-terminal oligomerization domain foldon[J].Journal of Biological Chemistry, 2003, 278(34):32 478-32 483.
[14] KEIZER-GUNNINK I, VUORELA A, MYLLYHARJU J, et al.Accumulation of properly folded human type III procollagen molecules in specific intracellular membranous compartments in the yeast Pichia pastoris[J].Matrix Biology, 2000, 19(1):29-36.
[15] PAKKANEN O, PIRSKANEN A, MYLLYHARJU J.Selective expression of nonsecreted triple-helical and secreted single-chain recombinant collagen fragments in the yeast Pichia pastoris[J].Journal of Biotechnology, 2006, 123(2):248-256.
[16] HANSMEIER N, CHAO T C, PÜHLER A, et al.The cytosolic, cell surface and extracellular proteomes of the biotechnologically important soil bacterium Corynebacterium efficiens YS-314 in comparison to those of Corynebacterium glutamicum ATCC 13032[J].Proteomics, 2006, 6(1):233-250.
[17] YIM S S, CHOI J W, LEE R J, et al.Development of a new platform for secretory production of recombinant proteins in Corynebacterium glutamicum[J].Biotechnology and Bioengineering, 2016, 113(1):163-172.
[18] YIM S S, AN S J, CHOI J W, et al.High-level secretory production of recombinant single-chain variable fragment (scFv) in Corynebacterium glutamicum[J].Applied Microbiology and Biotechnology, 2014, 98(1):273-284.
[19] KIKUCHI Y, DATE M, YOKOYAMA K I, et al.Secretion of active-form Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum:Processing of the pro-transglutaminase by a cosecreted subtilisin-like protease from Streptomyces albogriseolus[J].Applied and Environmental Microbiology, 2003, 69(1):358-366.
[20] WATANABE K, TSUCHIDA Y, OKIBE N, et al.Scanning the Corynebacterium glutamicum R genome for high-efficiency secretion signal sequences[J].Microbiology (Reading, England), 2009, 155(Pt 3):741-750.
[21] KIKUCHI Y, DATE M, ITAYA H, et al.Functional analysis of the twin-arginine translocation pathway in Corynebacterium glutamicum ATCC 13869[J].Applied and Environmental Microbiology, 2006, 72(11):7 183-7 192.
[22] KIKUCHI Y, ITAYA H, DATE M, et al.TatABC overexpression improves Corynebacterium glutamicum Tat-dependent protein secretion[J].Applied and Environmental Microbiology, 2009, 75(3):603-607.
[23] 胡立涛, 王阳, 李佳莲, 等.代谢工程改造谷氨酸棒杆菌合成透明质酸[J].食品与发酵工业, 2020, 46(18):1-7.HU L T, WANG Y, LI J L, et al.Metabolic engineering of Corynebacterium glutamicum for hyaluronic acid production[J].Food and Fermentation Industries, 2020, 46(18):1-7.
[24] BUTKOWSKI R J, NOELKEN M E, HUDSON B G.Estimation of the size of collagenous proteins by electrophoresis and gel chromatography[J].Methods in Enzymology, 1982, 82:410-423.
[25] ANNE J, VRANCKEN K, VAN MELLAERT L, et al.Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans[J].Biochimica et Biophysica Acta, 2014, 1843(8):1 750-1 761.
[26] HEMMERICH J, ROHE P, KLEINE B, et al.Use of a sec signal peptide library from Bacillus subtilis for the optimization of cutinase secretion in Corynebacterium glutamicum[J].Microbial Cell Factories, 2016, 15(4):323-324.
[27] JIN Q, PAN F, HU C F, et al.Secretory production of spider silk proteins in metabolically engineered Corynebacterium glutamicum for spinning into tough fibers[J].Metabolic Engineering, 2022, 70:102-114.
[28] MALAKAR P, VENKATESH K V.Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins[J].Applied Microbiology and Biotechnology, 2012, 93(6):2 543-2 549.
[29] YANG Z F, PEI X L, XU G, et al.Efficient inducible expression of nitrile hydratase in Corynebacterium glutamicum[J].Process Biochemistry, 2019, 76:77-84.
[30] 侯亚茹, 张萌, 许菲.引入非天然氨基酸胶原蛋白表达及交联成键的优化[J].生物工程学报, 2021, 37(9):3 231-3 241.HOU Y R, ZHANG M, XU F.Optimization of unnatural amino acid incorporation in collagen and the cross-linking through thioether bond[J].Chinese Journal of Biotechnology, 2021, 37(9):3 231-3 241.
[1] 李洋, 张稳杰, 韩雨辰, 翟懿雪, 张成林. 生物法合成4-羟基异亮氨酸的代谢工程研究进展[J]. 食品与发酵工业, 2022, 48(5): 281-288.
[2] 冯梦茹, 周化岚, 张建国. 毕赤酵母产类人胶原蛋白发酵条件的优化[J]. 食品与发酵工业, 2022, 48(3): 9-14.
[3] 宋卓琳, 黄明珠, 陈雪岚. 三磷酸腺苷供应优化促进谷氨酸棒杆菌产氨基酸的研究进展[J]. 食品与发酵工业, 2022, 48(3): 311-316.
[4] HABIMANA, 乔郅钠, 徐美娟, 杨套伟, 张显, 邵明龙, 饶志明. 重组谷氨酸棒杆菌全细胞催化一步法合成高果糖浆[J]. 食品与发酵工业, 2022, 48(2): 8-14.
[5] 张琦, 刘秀霞, 杨艳坤, 白仲虎. 谷氨酸棒杆菌中基因NCgl2632的敲除和过表达对三种外源蛋白表达的影响[J]. 食品与发酵工业, 2022, 48(14): 1-8.
[6] 魏敏华, 李宇虹, 张佳蓉, 孟静, 孟燕, 王浚哲, 张成林. 代谢工程构建谷氨酸棒杆菌合成5-氨基乙酰丙酸[J]. 食品与发酵工业, 2022, 48(14): 9-15.
[7] 王光路, 刘兰茜, 郑颖, 马歌丽, 张治刚, 王永亮, 杨雪鹏. 一株高产β-苯乙醇酵母菌的分离及产香特性研究[J]. 食品与发酵工业, 2022, 48(12): 68-74.
[8] 魏舒宇, 史锋. 4-羟基异亮氨酸无抗发酵的菌株构建和上罐条件优化[J]. 食品与发酵工业, 2022, 48(12): 117-122.
[9] 芦楠, 李宇虹, 陈宁, 张成林. L-异亮氨酸及其衍生物代谢工程研究进展[J]. 食品与发酵工业, 2021, 47(9): 307-313.
[10] 熊海波, 陈志超, 曹华杰, 徐庆阳. 全营养流加对谷氨酸棒杆菌发酵产L-异亮氨酸的影响[J]. 食品与发酵工业, 2021, 47(6): 11-17.
[11] 熊海波, 刘云鹏, 徐庆阳. 超声对谷氨酸棒杆菌发酵L-异亮氨酸的影响[J]. 食品与发酵工业, 2021, 47(4): 40-46.
[12] 李静竹, 胡梦君, 张建华. 蛋白质谷氨酰胺酶的重组表达与发酵条件优化[J]. 食品与发酵工业, 2021, 47(3): 294-301.
[13] 孟丽虹, 刘秀霞, 杨艳坤, 白仲虎. 基于全基因组重测序策略对谷氨酸棒杆菌外源蛋白高产菌株相关基因的挖掘及初步验证[J]. 食品与发酵工业, 2021, 47(24): 1-6.
[14] 刘晓宇, 李晋, 温赛. 游离型质粒在毕赤酵母中表达人溶菌酶的研究[J]. 食品与发酵工业, 2021, 47(22): 70-75.
[15] 陶大炜, 张小丹, 宁喜斌, 孙梦洁. 复合诱变选育高产α-环糊精葡萄糖基转移酶的菌株及产酶条件优化[J]. 食品与发酵工业, 2021, 47(19): 63-70.
[1] . Isolation and identification of anaerobic bacteria in the process of Maotai-flavor liquor brewing[J]. Food and Fermentation Industries, 0, (): 1 .
[2] YU Qing-lin et al. Fermentation optimization of recombinant Yarrowia lipolytica for its efficient succinic acid production[J]. Food and Fermentation Industries, 0, (): 1 .
[3] Gao Pei,Lu Jingbo,Duan Zuoying,Mao Zhonggui,Shi Zhongping. Effects of Dissolved Oxygen on the Key Enzymes in Glutamate Fermentation[J]. Food and Fermentation Industries, 2005, 31(10): 72 .
[4] . Influence of pH on the Growth of Lactobacillus casei G-7 and Lactic Acid Production[J]. Food and Fermentation Industries, 2003, 29(6): 35 .
[5] . Development of Biosynthesis of Theanine Synthesis from Gene Engineering Strain[J]. Food and Fermentation Industries, 2004, 30(1): 71 .
[6] Pan Hongyang,Wang Shuying,Mo Haizhen. Determination of Seleno-amino Acids in Enriched-selenium Dehydrated Brassica Chinensis by RHPLC[J]. Food and Fermentation Industries, 2008, 34(10): 141 .
[7] Chen Mo,Wang Zhiwei,Hu Changying,Wu Xiyang,Wang Pingli. Rapid Evaluating of Antimicrobial Activity of Vanillin with the Microplate Reader in 96-cell Plate[J]. Food and Fermentation Industries, 2009, 35(5): 63 .
[8] LI Cai-ming,HUANG Min,SHI Jian-zhong,GU Zheng-biao,HONG Yan,CHENG Li,LI Zhao-feng. Enhancing the extracellular expression of β-CGTase from Bacillus circulans STB01 by metal ions and amino acids[J]. Food and Fermentation Industries, 2016, 42(7): 1 .
[9] CUI Shu-mao,ZHAO Jian-xin,CHEN Wei,ZHANG Hao. Effect of acids produced by metabolizing carbohydrate of protectants on viability of Lactobacillus during freezing[J]. Food and Fermentation Industries, 2017, 43(3): 14 .
[10] SHEN Fang-lin,HUANG Shuang-cheng,HOU Peng-chen,GENG An-li,RUAN Wen-quan. A high effective autonomous replicative sequence in Saccharomyces cerevisiae[J]. Food and Fermentation Industries, 2017, 43(3): 20 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn