Please wait a minute...
 
 
食品与发酵工业  2022, Vol. 48 Issue (15): 169-175    DOI: 10.13995/j.cnki.11-1802/ts.031343
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
燕麦耐消化肽纳米载体的制备表征及其对咖啡酸苯乙酯的包埋作用研究
靳祖珑1, 冯思怡1, 胡亚雯1, 宋洪东1, 管骁1*, 孙注2, 戴智华3
1(上海理工大学 健康科学与工程学院/国家粮食产业(城市粮油保障)技术创新中心,上海,200093)
2(内蒙古燕谷坊生态农业科技(集团)股份有限公司, 内蒙古 呼和浩特,011700)
3(麦稻智慧粮食有限公司,上海,200241)
Preparation and characterization of oat digestive resistant peptide nanocarrier and its embedding effect on caffeic acid phenethyl ester
JIN Zulong1, FENG Siyi1, HU Yawen1, SONG Hongdong1, GUAN Xiao1*, SUN Zhu2, DAI Zhihua3
1(School of Health Science and Engineering/National Grain Industry (Urban Grain and Oil Security)Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai 200093, China)
2(Inner Mongolia Yangufang Ecological Agriculture Technology (Group) Co. Ltd., Hohhot 011700, China)
3(MDO Smarter Grain Technology Co. Ltd., Shanghai 200241, China)
下载:  HTML  PDF (1779KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高燕麦蛋白的水溶性并提高其在纳米材料领域的应用价值,通过酶水解法制备了燕麦耐消化肽纳米颗粒,并评估其包封疏水活性物质的能力及耐消化特性。燕麦蛋白经胃蛋白酶和胰蛋白酶消化制备出燕麦肽纳米颗粒,为50 nm的球形胶束。燕麦蛋白经过胃蛋白酶消化水解度为3.1%,胰蛋白酶消化水解度为10.7%。对内部相互作用进行分析表明,燕麦肽纳米颗粒主要由疏水作用驱动自组装,氢键和二硫键对维持结构稳定有一定作用。表面活性研究表明,燕麦肽纳米颗粒表面具有一定的疏水性和亲油性,水解改性大大增强了纳米颗粒的水溶性。以咖啡酸苯乙酯为模型药物评估燕麦肽纳米颗粒的载药性能,包封率为71%,载药量为3.5%,咖啡酸苯乙酯在水中的质量浓度从1.8提升至140 μg/mL。载药纳米颗粒体外模拟消化结果表明,耐消化肽纳米颗粒具有较强的耐消化特性,在胃肠液中咖啡酸苯乙酯的释放率低。稳态荧光光谱分析表明,疏水相互作用是咖啡酸苯乙酯与肽分子结合的主要作用力。研究表明,燕麦肽纳米颗粒是增加疏水物质溶解度的良好载体。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
靳祖珑
冯思怡
胡亚雯
宋洪东
管骁
孙注
戴智华
关键词:  燕麦蛋白  纳米颗粒  咖啡酸苯乙酯  耐消化肽  表面活性  pH-Stat法    
Abstract: In order to improve the water solubility of oat protein and its application value in the field of nano materials, oat digestion resistant peptide nanoparticles were prepared by enzymatic hydrolysis, and their ability to encapsulate hydrophobic active substances and digestion resistance were evaluated. Oat protein was digested by pepsin and trypsin to prepare oat peptide nanoparticles, which were spherical micelles with a size of 50 nm. The degree of hydrolysis of oat protein was 3.1% by pepsin digestion and 10.7% by trypsin digestion. Internal interaction analysis showed that the self-assembly of oat peptide nanoparticles was mainly driven by hydrophobic interaction, and hydrogen bond and disulfide bond played a certain role in maintaining structural stability. The study of surface activity showed that the surface of oat peptide had certain hydrophobicity and lipophilicity, and hydrolysis modification greatly enhanced the water solubility of nanoparticles. Caffeic acid phenethyl ester was used as a model drug to evaluate the drug loading performance of oat peptide nanoparticles. The results showed that entrapment efficiency was 71%, the drug loading was 3.5%, and the concentration of caffeic acid phenethyl ester in water was increased from 1.8 μg/mL to 140 μg/mL. The results of simulated digestion of drug loaded nanoparticles in vitro showed that digestive resistant peptide nanoparticles had strong digestive resistance. Steady state fluorescence spectra showed that hydrophobic interaction was the main binding force between caffeic acid phenethyl ester and peptide molecules. Oat peptide nanoparticles are good carriers to increase the solubility of hydrophobic substances.
Key words:  oat protein    nanoparticles    caffeic acid phenethyl ester    digestive resistant peptide    surface activity    pH-Stat method
收稿日期:  2022-03-07      修回日期:  2022-04-05           出版日期:  2022-08-15      发布日期:  2022-09-02      期的出版日期:  2022-08-15
基金资助: 国家自然科学基金面上项目(32172247);上海市曙光计划项目(19SG45);内蒙古自治区科技重大专项项目(2021SZD 0017)
作者简介:  第一作者:硕士研究生(管骁教授为通信作者,E-mail:gnxo@163.com)
引用本文:    
靳祖珑,冯思怡,胡亚雯,等. 燕麦耐消化肽纳米载体的制备表征及其对咖啡酸苯乙酯的包埋作用研究[J]. 食品与发酵工业, 2022, 48(15): 169-175.
JIN Zulong,FENG Siyi,HU Yawen,et al. Preparation and characterization of oat digestive resistant peptide nanocarrier and its embedding effect on caffeic acid phenethyl ester[J]. Food and Fermentation Industries, 2022, 48(15): 169-175.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.031343  或          http://sf1970.cnif.cn/CN/Y2022/V48/I15/169
[1] TANG C H.Strategies to utilize naturally occurring protein architectures as nanovehicles for hydrophobic nutraceuticals[J].Food Hydrocolloids, 2021, 112:106344.
[2] 王妙玲, 张彩猛, 李兴飞, 等.水媒法燕麦分离蛋白的制备[J].食品与发酵工业, 2021, 47(23):164-168.WANG M L, ZHANG C M, LI X F, et al.Preparation of oat protein isolate by aqueous extraction method[J].Food and Fermentation Industries, 2021, 47(23):164-168.
[3] CORSARO C, MALLAMACE D, NERI G, et al.Hydrophilicity and hydrophobicity:Key aspects for biomedical and technological purposes[J].Physica A:Statistical Mechanics and Its Applications, 2021, 580:126189.
[4] 李佳釔, 方佳兴, 李亚隆, 等.酶解大豆蛋白复合凝聚微胶囊的制备及其性质表征[J].食品与发酵工业, 2021, 47(10):1-7.LI J Y, FANG J X, LI Y L, et al.Preparation and characterization of hydrolyzed soy protein isolate microcapsules by complex coacervation[J].Food and Fermentation Industries, 2021, 47(10):1-7.
[5] 张汆, 刘洋, 陈志宏, 等.双指标评价核桃蛋白酶法增溶改性[J].中国粮油学报, 2019, 34(12):27-33;40.ZHANG C, LIU Y, CHEN Z H, et al.Enzymatic solubilization modification of walnut protein evaluated with double indices[J].Journal of the Chinese Cereals and Oils Association, 2019, 34(12):27-33;40.
[6] 郝梦真, 李欣芮, 牟瑶, 等.基于耐消化肽的核桃主要过敏原Jug r 2的线性表位筛选[J].中国食品学报, 2022, 22(2):1-10.HAO M Z, LI X R, MU Y, et al.Linear epitopes screening study of major walnut allergen Jug r 2 based on anti-digestion peptides[J].Journal of Chinese Institute of Food Science and Technology, 2022, 22(2):1-10.
[7] 魏雪林, 钟艳, 刘雪, 等.疏水性功能性因子纳米包埋体系研究进展[J].食品与发酵工业, 2021, 47(14):300-306.WEI X L, ZHONG Y, LIU X, et al.Review of hydrophobic functional factor nano-embedding system[J].Food and Fermentation Industries, 2021, 47(14):300-306.
[8] QIN J J, YANG M, WANG Y C, et al.Interaction between caffeic acid/caffeic acid phenethyl ester and micellar casein[J].Food Chemistry, 2021, 349:129154.
[9] MAT D J L, CATTENOZ T, SOUCHON I, et al.Monitoring protein hydrolysis by pepsin using pH-stat:In vitro gastric digestions in static and dynamic pH conditions[J].Food Chemistry, 2018, 239:268-275.
[10] MAT D J L, LE FEUNTEUN S, MICHON C, et al.In vitro digestion of foods using pH-stat and the INFOGEST protocol:Impact of matrix structure on digestion kinetics of macronutrients, proteins and lipids[J].Food Research International, 2016, 88:226-233.
[11] SHEN P H, ZHOU F B, ZHANG Y H, et al.Formation and characterization of soy protein nanoparticles by controlled partial enzymatic hydrolysis[J].Food Hydrocolloids, 2020, 105:105844.
[12] ZHANG Y H, ZHAO M M, NING Z X, et al.Development of a sono-assembled, bifunctional soy peptide nanoparticle for cellular delivery of hydrophobic active cargoes[J].Journal of Agricultural and Food Chemistry, 2018, 66(16):4 208-4 218.
[13] TIAN R, FENG J R, HUANG G, et al.Ultrasound driven conformational and physicochemical changes of soy protein hydrolysates[J].Ultrasonics Sonochemistry, 2020, 68:105202.
[14] DONG Y B, LAN T, HUANG G, et al.Development and characterization of nanoparticles formed by soy peptide aggregate and epigallocatechin-3-gallate as an emulsion stabilizer[J].LWT, 2021, 152:112385.
[15] JIANG P, HUANG J, BAO C, et al.Enzymatically partially hydrolyzed α-lactalbumin peptides for self-assembled micelle formation and their application for coencapsulation of multiple antioxidants[J].Journal of Agricultural and Food Chemistry, 2018, 66(49):12 921-12 930.
[16] CHITHRANI B D, GHAZANI A A, CHAN W C W.Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells[J].Nano Letters, 2006, 6(4):662-668.
[17] LI T, LU X M, ZHANG M R, et al.Peptide-based nanomaterials:Self-assembly, properties and applications[J].Bioactive Materials, 2022, 11:268-282.
[18] ZANGI R, ZHOU R H, BERNE B J.Urea’s action on hydrophobic interactions[J].Journal of the American Chemical Society, 2009, 131(4):1 535-1 541.
[19] LIU K, ZHA X Q, LI Q M, et al.Hydrophobic interaction and hydrogen bonding driving the self-assembling of quinoa protein and flavonoids[J].Food Hydrocolloids, 2021, 118:106807.
[20] CHANDLER D.Interfaces and the driving force of hydrophobic assembly[J].Nature, 2005, 437(7 059):640-647.
[21] 孔金龙, 张瑜, 朱亚萍, 等.纳米微球表面特性对载药性能影响的研究进展[J].橡塑技术与装备, 2022, 48(2):15-19.KONG J L, ZHANG Y, ZHU Y P, et al.Research progress on the effect of nanosphere surface characteristics on drug loading performance[J].China Rubber/Plastics Technology and Equipment, 2022, 48(2):15-19.
[22] YANO Y F.Kinetics of protein unfolding at interfaces[J].Journal of Physics.Condensed Matter:An Institute of Physics Journal, 2012, 24(50):503101.
[23] XIAO H S, HUANG L Y, ZHANG W, et al.Damage of proteins at the air/water interface:Surface tension characterizes globulin interface stability[J].International Journal of Pharmaceutics, 2020, 584:119445.
[24] STANIMIROVA R D, MARINOVA K G, DANOV K D, et al.Competitive adsorption of the protein hydrophobin and an ionic surfactant:Parallel vs sequential adsorption and dilatational rheology[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 457:307-317.
[25] WEN L L, LYU M, XIAO H S, et al.Protein aggregation and performance optimization based on microconformational changes of aromatic hydrophobic regions[J].Molecular Pharmaceutics, 2018, 15(6):2 257-2 267.
[26] 邢永娜, 冯进, 李春阳.姜黄素与白首乌蛋白以及大豆分离蛋白相互作用的比较[J].食品科学, 2020, 41(10):53-60.XING Y N, FENG J, LI C Y.Comparative interactions of curcumin with Cynanchum auriculatum royle ex wight protein and soy protein isolate[J].Food Science, 2020, 41(10):53-60.
[1] 田冰, 武煊, 钟玉洁, 杨吉霞, 陈应娟, 陶晓奇. 基于金纳米颗粒过氧化物酶活性的比色传感器在食品安全检测中的应用[J]. 食品与发酵工业, 2022, 48(4): 274-279.
[2] 孟淑娟, 李慧男, 庞正军, 慕静, 王凤寰. 表面活性肽在大肠杆菌中的异源表达[J]. 食品与发酵工业, 2022, 48(3): 30-37.
[3] 赵路洁, 段续, 曹伟伟, 任广跃, 刘盼盼, 任星. 熊果酸壳聚糖纳米颗粒的制备工艺优化及评价[J]. 食品与发酵工业, 2022, 48(12): 46-51.
[4] 卫晓怡, 徐涵瑜, 张路遥, 司晓晶, 韩梅, 崔琳琳. 高铁酸钾联合表面活性剂去除紫甘蓝、生菜中农药残留的条件优化[J]. 食品与发酵工业, 2022, 48(11): 192-199.
[5] 冯鑫, 马良, 戴宏杰, 付余, 余永, 朱瀚昆, 王红霞, 张宇昊. 食品级Pickering乳液的稳定性及β-胡萝卜素的装载研究[J]. 食品与发酵工业, 2021, 47(6): 18-25.
[6] 王妙玲, 张彩猛, 李兴飞, 华欲飞. 水媒法燕麦分离蛋白的制备[J]. 食品与发酵工业, 2021, 47(23): 164-168.
[7] 王文莉, 柴向华, 范宇婷, 吴克刚, 段雪娟, 于泓鹏, 刘晓丽. 基于玉米醇溶蛋白纳米颗粒稳定的Pickering乳液研究进展[J]. 食品与发酵工业, 2021, 47(18): 301-307.
[8] 杨福霞, 马晓彤, 韩舜愈. 温和条件下荧光硅纳米颗粒的制备及其在食品中苋菜红的检测应用[J]. 食品与发酵工业, 2021, 47(15): 286-291.
[9] 张光胤, 蔡爱丽, 邓放明, 赵倩, 石星波. 双模态改良型酶联免疫吸附测定法用于黄曲霉毒素B1的检测研究[J]. 食品与发酵工业, 2021, 47(12): 224-230.
[10] 冯静静, 杨自名, 吴静, 李伟, Sokhna Mbacke Gningue, 赵礼军, 周文豪, 薛正莲, 王洲, 刘艳. 培养条件及表面活性剂的添加对纳豆芽孢杆菌生物膜形成的影响[J]. 食品与发酵工业, 2020, 46(3): 90-96.
[11] 林柳, 陶宁萍. 鱼头汤在体外仿生消化系统中的运动参数优化及消化特性研究[J]. 食品与发酵工业, 2020, 46(23): 92-98.
[12] 曾仪维, 张小萱, 程思俊, 刘欢, 闵婷, 梅运军. 一株亚硒酸钠还原菌的分离及纳米硒表征[J]. 食品与发酵工业, 2020, 46(22): 79-83.
[13] 陈红惠, TARUN BELWAL, 李刚凤, 罗自生. 表面活性剂协同超声波酶法提取三七花总皂苷工艺优化及抗氧化活性研究[J]. 食品与发酵工业, 2020, 46(20): 178-186.
[14] 徐霞, 杨邦伟, 蔡燕萍, 刘书来, 刘建华, 丁玉庭. 贝壳源纳米乳酸钙的制备与表征[J]. 食品与发酵工业, 2020, 46(2): 66-72.
[15] 欧阳秀酝, 李琳, 张林威, 程云辉, 许宙. 基于荧光共振能量转移的免疫传感器检测黄曲霉毒素B1[J]. 食品与发酵工业, 2020, 46(16): 226-230.
[1] Zheng Dan et al.. The inhibiting effect of flavonoid “astilbin” on pancreatic lipase[J]. Food and Fermentation Industries, 0, (): 1 .
[2] . Effect of Protein on Quality of Chinese Rice Wine #br# [J]. Food and Fermentation Industries, 0, (): 1 .
[3] Pan Hongyang,Wang Shuying,Mo Haizhen. Determination of Seleno-amino Acids in Enriched-selenium Dehydrated Brassica Chinensis by RHPLC[J]. Food and Fermentation Industries, 2008, 34(10): 141 .
[4] Chen Mo,Wang Zhiwei,Hu Changying,Wu Xiyang,Wang Pingli. Rapid Evaluating of Antimicrobial Activity of Vanillin with the Microplate Reader in 96-cell Plate[J]. Food and Fermentation Industries, 2009, 35(5): 63 .
[5] WANG Kai-li et al. Effect of fermentation process on quality of fermented grains jujube biscuit[J]. Food and Fermentation Industries, 2018, 44(6): 106 -114 .
[6] TANG Chao, ZHANG Hanyu, WANG Ting, FENG Guangwen, QIAN Weidong, CAI Changlong, MAO Peihong. Differentiating transcriptomic patterns and functional analysis of Hansenula anomala during cultivation[J]. Food and Fermentation Industries, 2019, 45(4): 1 -6 .
[7] PENG Yuanyuan, WU Xuan, TAO Xiaoqi. Quantitative detection of meat adulteration by real-time fluorescent PCR[J]. Food and Fermentation Industries, 2019, 45(15): 279 -287 .
[8] LIU Fang, YANG Kangzhuo, ZHANG Jianmin, HE Zhanglan, PENG Zhiyun, ZHENG Jia. Classification of strong-flavor Baijiu using electronic nose and GC-MStechnologies[J]. Food and Fermentation Industries, 2020, 46(2): 73 -78 .
[9] CHU Qianqian, HAN Qiuyu, CHEN Biwen, BAO Bin. Determination of free amino group content of protein using trinitrobenzenesulfonic acid (TNBS) method[J]. Food and Fermentation Industries, 2020, 46(6): 275 -279 .
[10] YU Peibin, DU Jing, CHEN Jianxin. Study on screening and identification of Bacillus in the process of high-temperature aerobic composting and its application[J]. Food and Fermentation Industries, 2020, 46(12): 199 -205 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn