Please wait a minute...
 
 
食品与发酵工业  2022, Vol. 48 Issue (15): 85-90    DOI: 10.13995/j.cnki.11-1802/ts.031471
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
产β-葡萄糖苷酶乳酸菌益生特性研究
冯程程1,2,3, 蔡子哲1,2,3, 陈琼4, 欧仕益1, 谢小冬1,2,3, 汪勇1,2,3, MARTIN J T REANEY2,3,5, 张宁1,2,3*
1(暨南大学 食品科学与工程系,广东 广州,510632)
2(广东省油料生物炼制与营养安全国际联合研究中心,广东 广州,510632)
3(暨南大学-萨斯喀彻温大学“油料生物炼制与营养”联合实验室,广东 广州,510632)
4(广州市微生物研究所有限公司,广东 广州,510663)
5(加拿大萨斯喀彻温大学 农业与生物资源学院,加拿大 萨斯卡通,S7N5A8)
Probiotic properties of β-glucosidase producing lactic acid bacteria
FENG Chengcheng1,2,3, CAI Zizhe1,2,3, CHEN Qiong4, OU Shiyi1, XIE Xiaodong1,2,3, WANG Yong1,2,3, MARTIN J T REANEY2,3,5, ZHANG Ning1,2,3*
1(Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China)
2(Guangdong International Joint Research Center for Oilseeds Biorefinery, Nutrition and Safety, Guangzhou 510632, China)
3(Jinan University-Saskatchewan Oilseed Joint Laboratory, Guangzhou 510632, China)
4(Guangzhou Institute of Microbiology Co., Ltd, Guangzhou 510663, China)
5(College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon S7N5A8, Canada)
下载:  HTML   PDF (1366KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了3株乳酸菌在不同碳源诱导下产β-葡萄糖苷酶的能力,并评价了其益生特性。研究发现,3株乳酸菌产生的β-葡萄糖苷酶同时具有水解烷基糖苷和芳香基糖苷的能力,纤维二糖诱导能显著提高β-葡萄糖苷酶活力。坚强肠球菌(Enterococcus durans)GW18275在纤维二糖为碳源时有最大β-葡萄糖苷酶活力(16.02 U/mL)。模拟胃肠液耐受试验结果表明,3株乳酸菌活菌数保持在106 CFU/mL以上。植物乳植杆菌(Lactiplantibacillus plantarum)C5在3 g/L胆盐培养3 h有最大存活率(83.70±6.21)%,对二甲苯和乙酸乙酯的表面疏水性最佳。植物乳植杆菌(Lactiplantibacillus plantarum)C1有最高的自聚集率(80.72±1.58)%。此外,3株菌均无溶血性,对头孢菌素类、β-酰胺类及氨基糖苷类抗生素有不同的药敏性,对四环素均敏感。3株乳酸菌具有较高的β-葡萄糖苷酶活性,作为功能性益生菌候选物具有良好的益生特性,可为日后开发高产β-葡萄糖苷酶益生制剂提供基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯程程
蔡子哲
陈琼
欧仕益
谢小冬
汪勇
MARTIN J T REANEY
张宁
关键词:  β-葡萄糖苷酶  酶活力  乳酸菌  益生特性  模拟胃肠液    
Abstract: The production capability of β-glucosidase induced by different carbon sources and probiotic characteristics of three lactic acid bacteria strains were investigated. Results showed that the β-glucosidase produced by the three strains was capable of hydrolyzing both alkyl glucoside and aryl glucoside, and the enzyme activity was significantly increased via the induction of cellobiose (P<0.05). The maximum β-glucosidase activity (16.02 U/mL) was observed with Enterococcus durans GW18275 when it was cultured in MRS with the carbon source of cellobiose. Simulated gastroenteric fluid tolerance test found that the number of viable bacteria of three lactic acid bacteria strains in simulated gastroenteric fluid remained above 106 CFU/mL. Lactiplantibacillus plantarum C5 possessed the highest survival rate (83.70±6.21)% cultured by 0.3% bile salt for 3 h, and existed the best surface hydrophobicity to xylene and ethyl acetate. Lactiplantibacillus plantarum C1 showed the highest auto-aggregation rate (80.72±1.58)%. Moreover, the three strains were non-hemolytic and had different drug sensitivity to cephalosporins, β-lactams and aminoglycoside antibiotics, as well as possessing sensitivity to tetracycline. Given these results, the three lactic acid bacteria strains presented high β-glucosidase activity, and had good probiotic properties as candidates of functional probiotics, which can be used to develop new functional probiotics products.
Key words:  β-glucosidase    enzyme activity    lactic acid bacteria    probiotic characteristics    simulated gastrointestinal fluid
收稿日期:  2022-03-08      修回日期:  2022-04-06           出版日期:  2022-08-15      发布日期:  2022-09-02      期的出版日期:  2022-08-15
基金资助: 国家重点研发计划政府间国际创新合作重点专项(2018YFE0108400);广州市科技计划项目民生科技攻关计划项目(201903010049)
作者简介:  第一作者:硕士研究生(张宁教授为通信作者,E-mail:tzhning@jnu.edu.cn)
引用本文:    
冯程程,蔡子哲,陈琼,等. 产β-葡萄糖苷酶乳酸菌益生特性研究[J]. 食品与发酵工业, 2022, 48(15): 85-90.
FENG Chengcheng,CAI Zizhe,CHEN Qiong,et al. Probiotic properties of β-glucosidase producing lactic acid bacteria[J]. Food and Fermentation Industries, 2022, 48(15): 85-90.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.031471  或          http://sf1970.cnif.cn/CN/Y2022/V48/I15/85
[1] 钱超. 酒曲产β-葡萄糖苷酶的乳酸菌在葡萄酸面团面包中的应用[D].无锡:江南大学, 2017.QIAN C.β-glucosidase producing lactic acid bacteria from qu starter and its application in raisin sourdough bread[D].Wuxi:Jiangnan University, 2017.
[2] 钟姝凝. β-葡萄糖苷酶对人参皂苷生物转化及其相互作用机制研究[D].长春:吉林大学, 2021.ZHONG S N.Study on biotransformation of ginsenosides by β-glucosidase and the interaction mechanism[D].Changchun:Jilin University, 2021.
[3] 张晨, 贾蒙, 马亚琴.β-葡萄糖苷酶活性稳定化技术在柑橘产品增香中的应用[J].食品与发酵工业, 2021, 47(11):303-309.ZHANG C, JIA M, MA Y Q.Application of β-glucosidase activity stabilization technology in citrus flavor enhancement[J].Food and Fermentation Industries, 2021, 47(11):303-309.
[4] 姚瑶, 刘庆, 刘福, 等.β-葡萄糖苷酶的性质及其在食品加工中的应用研究进展[J].贵州农业科学, 2018, 46(2):132-135.YAO Y, LIU Q, LIU F, et al.Characteristics of β-glucosidase and its applications in food processing[J].Guizhou Agricultural Sciences, 2018, 46(2):132-135.
[5] 肖振伦. 珊瑚来源的β-葡糖苷酶产生菌筛选、基因表达与低聚龙胆糖合成研究[D].南宁:广西大学, 2021.XIAO Z L.Screening of β-glucosidase-producing bacteria from coral and genes expression for preparation gentiooligosaccharides[D].Nanning:Guangxi University, 2021.
[6] 潘利华, 罗建平.β-葡萄糖苷酶的研究及应用进展[J].食品科学, 2006, 27(12):803-807.PAN L H, LUO J P.Advance in research and application of β-D-glucosidase[J].Food Science, 2006, 27(12):803-807.
[7] YUKSEKDAG Z, CINAR ACAR B, ASLIM B, et al.β-Glucosidase activity and bioconversion of isoflavone glycosides to aglycones by potential probiotic bacteria[J].International Journal of Food Properties, 2017, 20(sup3):S2878-S2886.
[8] 黄玉军, 周帆, 于俊娟, 等.高转化大豆异黄酮乳酸菌的筛选及在豆乳中的发酵特性[J].食品研究与开发, 2021, 42(3):157-162.HUANG Y J, ZHOU F, YU J J, et al.Screening of lactic acid bacteria with high conversion of soybean isoflavones and fermentation characteristics in soybean milk[J].Food Research and Development, 2021, 42(3):157-162.
[9] LEITE A, MIGUEL M A L, PEIXOTO R S, et al.Probiotic potential of selected lactic acid bacteria strains isolated from Brazilian kefir grains[J].Journal of Dairy Science, 2015, 98(6):3 622-3 632.
[10] AYIVI R D, GYAWALI R, KRASTANOV A, et al.Lactic acid bacteria:Food safety and human health applications[J].Dairy, 2020, 1(3):202-232.
[11] PISANO M B, VIALE S, CONTI S, et al.Preliminary evaluation of probiotic properties of Lactobacillus strains isolated from Sardinian dairy products[J].BioMed Research International, 2014, 2014:286390.
[12] SON S H, JEON H L, YANG S J, et al.Probiotic lactic acid bacteria isolated from traditional Korean fermented foods based on β-glucosidase activity[J].Food Science and Biotechnology, 2017, 27(1):123-129.
[13] SHEKH S L, DAVE J M, VYAS B R M.Characterization of Lactobacillus plantarum strains for functionality, safety and γ-amino butyric acid production[J].LWT, 2016, 74:234-241.
[14] KLAYRAUNG S.Probiotic properties of lactobacilli isolated from Thai traditional food[J].Scientia Pharmaceutica, 2008, 76(3):485-503.
[15] 谷武阳. 大熊猫肠道纤维素分解菌的筛选及β-葡萄糖苷酶基因的克隆与表达[D].雅安:四川农业大学, 2014.GU W Y.Screening of strains for high β-glucosidase producing from the giant panda intestine and cloning, expression of its β-glucosidase gene[D].Ya’an:Sichuan Agricultural University, 2014.
[16] ARGYRI A A, ZOUMPOPOULOU G, KARATZAS K A G, et al.Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests[J].Food Microbiology, 2013, 33(2):282-291.
[17] HOQUE M Z, AKTER F, HOSSAIN K, et al.Isolation, identification and analysis of probiotic properties of Lactobacillus spp.from selective regional yoghurts[J].World Journal of Dairy & Food Sciences, 2010, 5:39-46.
[18] VIJAYA KUMAR B, VIJAYENDRA S V N, REDDY O V S.Trends in dairy and non-dairy probiotic products: A review[J].Journal of Food Science and Technology, 2015, 52(10):6 112-6 124.
[19] GEORGIEVA R, YOCHEVA L, TSEROVSKA L, et al.Antimicrobial activity and antibiotic susceptibility of Lactobacillus and Bifidobacterium spp.intended for use as starter and probiotic cultures[J].Biotechnology & Biotechnological Equipment, 2015, 29(1):84-91.
[20] 许女, 李雅茹, 王超宇, 等.传统发酵食品中乳酸菌的抗生素耐药性评估及耐药基因分析[J].中国食品学报, 2020, 20(7):160-171.XU N, LI Y R, WANG C Y, et al.Antimicrobial resistance evaluation and resistant gene profiles of lactic acid bacteria isolated from traditional fermented foods[J].Journal of Chinese Institute of Food Science and Technology, 2020, 20(7):160-171.
[21] 吴亚, 赵红丽.5049份尿液微生物培养鉴定结果及耐药性分析[J].中国实验诊断学, 2021, 25(11):1 617-1 620.WU Y, ZHAO H L.The identification results and the analysis of drug resistance of 5049 urine microbial culture[J].Chinese Journal of Laboratory Diagnosis, 2021, 25(11):1 617-1 620.
[22] ZAGO M, FORNASARI M E, CARMINATI D, et al.Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses[J].Food Microbiology, 2011, 28(5):1 033-1 040.
[23] FERRANDO V, QUIBERONI A, REINHEIMER J, et al.Functional properties of Lactobacillus plantarum strains:A study in vitro of heat stress influence[J].Food Microbiology, 2016, 54:154-161.
[24] PLESSAS S, NOUSKA C, KARAPETSAS A, et al.Isolation, characterization and evaluation of the probiotic potential of a novel Lactobacillus strain isolated from Feta-type cheese[J].Food Chemistry, 2017, 226:102-108.
[25] MULAW G, SISAY TESSEMA T, MULETA D, et al.In vitro evaluation of probiotic properties of lactic acid bacteria isolated from some traditionally fermented Ethiopian food products[J].International Journal of Microbiology, 2019, 2019:7179514.
[26] OUWEHAND A C, SALMINEN S.In vitro adhesion assays for probiotics and their in vivo relevance:A review[J].Microbial Ecology in Health and Disease, 2003, 15(4):175-184.
[27] GARCIA-GONZALEZ N, PRETE R, BATTISTA N, et al.Adhesion properties of food-associated Lactobacillus plantarum strains on human intestinal epithelial cells and modulation of IL-8 release[J].Frontiers in Microbiology, 2018, 9:2392.
[28] 赵维俊. 益生菌表面疏水性与自动聚集能力的研究[D].西安:陕西科技大学, 2012.ZHAO W J.Study on surface hydrophobicity and auto-aggregation ability of probiotic[D].Xi’an:Shaanxi University of Science & Technology, 2012.
[29] 何杉杉, 王晓蕊, 彭禹熙, 等.雪莲菌中乳酸菌的益生特性[J].食品科学, 2022, 43(2):210-216.HE S S, WANG X R, PENG Y X, et al.Probiotic properties of lactic acid bacteria isolated from Tibetan kefir grain[J].Food Science, 2022, 43(2):210-216.
[30] BHARDWAJ A, GUPTA H, KAPILA S, et al.Safety assessment and evaluation of probiotic potential of bacteriocinogenic Enterococcus faecium KH 24 strain under in vitro and in vivo conditions[J].International Journal of Food Microbiology, 2010, 141(3):156-164.
[1] 张苇苗, 程中一, 周丽, 周哲敏. 腈水合酶底物通道入口调控催化活性的关键氨基酸位点的定位与改造[J]. 食品与发酵工业, 2022, 48(9): 8-13.
[2] 黎婷玉, 陈瑶瑶, 张彦, 熊建文, 郭壮, 王玉荣. 南宁地区酸笋细菌类群分析[J]. 食品与发酵工业, 2022, 48(9): 71-76.
[3] 凌莉, 吕敬章, 陈晶, 江月, 万志刚, 刘婧文, 严琼英, 卢行安. 乳酸菌食品中污染菌的计数和MALDI-TOF MS鉴定[J]. 食品与发酵工业, 2022, 48(9): 230-234.
[4] 侯庆宇, 杨前进, 金瑞, 张濛, 田康明, 王正祥. 甘蔗渣酶解制糖工艺的建立与优化[J]. 食品与发酵工业, 2022, 48(8): 9-14.
[5] 陈志超, 王金多, 徐庆阳. 微量元素与生长因子对L-苯丙氨酸发酵的影响[J]. 食品与发酵工业, 2022, 48(8): 82-89.
[6] 王超, 高磊, 赵子健, 赵玉娟, 杨舸, 牛春华, 李盛钰. 益生菌附属发酵剂对切达干酪质构、游离氨基酸和短链脂肪酸的影响[J]. 食品与发酵工业, 2022, 48(8): 136-142.
[7] 冯丹丹, 胡萍, 许浩翔, 张珺, 石媛媛, 吴文燕, 李娟, 左云洋, 李久长. 乳酸菌发酵刺梨汁体外降血糖、降血脂活性研究[J]. 食品与发酵工业, 2022, 48(8): 212-219.
[8] 朱丽萍, 杨强, 江威, 李群, 林斌, 唐洁, 陈申习. 清香型小曲白酒霉菌菌群解析与酶活特性研究[J]. 食品与发酵工业, 2022, 48(7): 70-77.
[9] 钱桢文, 吴宗文, 吴殿辉, 鲁振东, 谢广发, 胡志明, 裘哲灵, 毛青钟. 强化乳酸菌酿造高酸黄酒工艺研究[J]. 食品与发酵工业, 2022, 48(6): 168-173.
[10] 赵泓舟, 杜木英, ZALAN Zsolt, HEGYI Ferenc, 吴良如, 张同芳, 郑炯. 方竹笋膳食纤维作为益生元对乳酸菌生长的影响[J]. 食品与发酵工业, 2022, 48(6): 174-180.
[11] 宫连瑾, 薄佳慧, 张天天, 孙红玉, 陈义琴, 裴若云, 肖力争. 黄金茶红茶加工过程中香气成分及其相关酶活性的动态变化[J]. 食品与发酵工业, 2022, 48(6): 204-209.
[12] 张媛, 廖卫芳, 缪礼鸿, 杨团元, 刘蒲临, 杨一斌. 采用实时荧光定量PCR法检测白酒酿造系统中的重要功能菌株Lactobacillus jinshani[J]. 食品与发酵工业, 2022, 48(6): 270-275.
[13] 周晴晴, 李理, 俞赟霞, 李言郡, 余腾斐, 张妍, 陈苏. 高产胞外多糖嗜热链球菌的筛选及其直投式发酵剂的应用[J]. 食品与发酵工业, 2022, 48(5): 81-88.
[14] 易军鹏, 贺健, 李欣, 段续, 任广跃, 吴甜甜, 董晶寅. 微波真空冷冻干燥对酸菜品质及微生物活性的影响[J]. 食品与发酵工业, 2022, 48(3): 191-197.
[15] 李晓晨, 王进, 徐晨晨, 肖叶, 李燕, 卢瑛, 李晓晖. 奶酪中乳酸菌的分离筛选及其对小清蛋白的降解性能初步评价[J]. 食品与发酵工业, 2022, 48(2): 65-70.
[1] WANG Yin et al. Effect of Transglutaminase Concentration on the Gel Properties of Goat Yogurt[J]. Food and Fermentation Industries, 2017, 43(11): 119 .
[2] ZHANG Dong et al. Effect of different amounts of salt on quality of bacon[J]. Food and Fermentation Industries, 2017, 43(11): 159 .
[3] WANG An-feng et al. Optimization of hydrolysis process of pinctadafucata by response surface method[J]. Food and Fermentation Industries, 2017, 43(11): 165 .
[4] WU Peng et al. The development of microwave cooked carrot chips based on domestic microwave oven[J]. Food and Fermentation Industries, 2017, 43(11): 180 .
[5] FENG Hui-jun et al. The research advance of genus Therwoactinowycer[J]. Food and Fermentation Industries, 2017, 43(11): 257 .
[6] . Isolation and identification of anaerobic bacteria in the process of Maotai-flavor liquor brewing[J]. Food and Fermentation Industries, 0, (): 1 .
[7] YU Qing-lin et al. Fermentation optimization of recombinant Yarrowia lipolytica for its efficient succinic acid production[J]. Food and Fermentation Industries, 0, (): 1 .
[8] YUAN Xu, WU Xiao-yu, LI Wei-li, WANG Qing-hui, LIU Ping, LIN Hong-bin, CHE Zhen-ming, WU Tao. Evaluation of nutrition, polyphenols and their antioxidant activities in Pixian bean paste[J]. Food and Fermentation Industries, 2018, 44(9): 270 -274 .
[9] . Construction of Fast Purification Method of Recombinant Alkaline Protease with FPLC[J]. Food and Fermentation Industries, 2002, 28(4): 11 .
[10] . Study on the Main Components of the Gum from Ficus pumila (L.)[J]. Food and Fermentation Industries, 2002, 28(4): 38 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn