Please wait a minute...
 
 
食品与发酵工业  2022, Vol. 48 Issue (15): 24-32    DOI: 10.13995/j.cnki.11-1802/ts.032308
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
窖泥中梭菌和互营球菌交互作用对生长和短链脂肪酸代谢的影响
孙红1,2, 柴丽娟2,4*, 方冠宇1,2, 陆震鸣2,4, 张晓娟2,4, 王松涛5, 沈才洪5, 史劲松3, 许正宏1,2,5*
1(江南大学 生物工程学院,江苏 无锡,214122)
2(粮食发酵与食品生物制造国家工程研究中心(江南大学),江苏 无锡,214122)
3(江南大学 生命科学与健康工程学院,江苏 无锡,214122)
4(江苏省生物活性制品加工工程技术研究中心,江苏 无锡,214122)
5(国家固态酿造工程技术研究中心,四川 泸州,646000)
Effect of co-culture of Clostridium strains and Novisyntrophococcus fermenticellae, isolated from pit mud, on growth and short-chain fatty acid metabolism
SUN Hong1,2, CHAI Lijuan2,4,*, FANG Guanyu1,2, LU Zhenming2,4, ZHANG Xiaojuan2,4, WANG Songtao5, SHEN Caihong5, SHI Jinsong3, XU Zhenghong1,2,5,*
1(School of Biotechnology, Jiangnan University, Wuxi 214122, China)
2(National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China)
3(School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China)
4(Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China)
5(National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China)
下载:  HTML  PDF (5645KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究浓香型白酒窖泥中重要功能微生物梭菌属和其他微生物之间的交互作用,通过比较基因组解析了不同梭菌属微生物基因组功能及短链脂肪酸代谢通路的差异,以窖泥中筛选出的1株互营球菌和7株梭菌为研究对象,构建了互营球菌和梭菌的两两共培养体系,比较了不同梭菌纯培养和共培养中生长和短链脂肪酸代谢的变化。比较基因组分析结果表明,梭菌属的短链脂肪酸代谢通路存在种间差异。共培养结果进一步表明,互营球菌Novisyntrophococcus fermenticellae JN500902(N.902)对Clostridium fermenticellae JN500901(C.901)和C.luticellarii Clu07的生长和代谢具有显著促进作用,共培养中葡萄糖的消耗量增加,生物量增加。此外,C.901的丁酸和己酸积累量分别增加0.44和0.63倍左右,Clu07的丁酸和戊酸产量分别增加0.77倍和2.63倍。N.902与2株产戊酸梭菌共培养时对生长的影响效果不显著,但是促进了C.scatologenes Cls01戊酸的产生,抑制了C.aciditolerans Claci01戊酸的积累。N.902与3株产丁酸梭菌C.beijerinckii Clb01、C.guangxiense Clgx01和C.tyrobutyricum Clt01共培养前期(24 h之前),生长速度或生长量高于纯培养,但是发酵结束共培养中丁酸的积累量发生不同程度的下降。对梭菌属和互营球菌之间的相互作用研究有助于拓宽窖泥微生物互作产香的认识。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙红
柴丽娟
方冠宇
陆震鸣
张晓娟
王松涛
沈才洪
史劲松
许正宏
关键词:  窖泥  Clostridium  Novisyntrophococcus  交互作用  短链脂肪酸    
Abstract: To study the interaction between Clostridium, the important functional microorganisms in pit mud of Chinese strong-flavor Baijiu, and other microorganisms in pit mud, we analyzed the differences of genomic functions and short chain fatty acid (SCFA) metabolic pathways of Clostridium species based on comparative genomics.Besides, we selected Novisyntrophococcus fermenticellae JN500902 (N.902) and seven strains of Clostridium isolated from pit mud as the research object, constructed a two-strain coculture system of N.902 and Clostridium strain, and compared the changes of growth and SCFA metabolism in mono- and co-culture.Comparative genomics analysis showed that Clostridium’s SCFA metabolic pathway was interspecific differences.Co-culture experiment results further showed that N.902 had a significant positive effect on the growth and metabolism of Clostridium fermenticellae JN500901 (C.901) and C.luticellarii Clu07, the consumption of glucose and growth increased in coculture.Besides, the accumulation of butyric acid and caproic acid in C.901 increased by about 0.44 folds and 0.63 folds, respectively, and the yield of butyric acid and valeric acid in Clu07 increased by 0.77 times and 2.63 times, respectively.N.902 co-cultured with two valeric acid producing Clostridium strains had no significant effect on the growth, while it promoted the production of valeric acid in C.scatologenes Cls01 and inhibited the accumulation of valeric acid in C.aciditolerans Claci01.Co-culture of N.902 and three butyric acid-producing Clostridium strains, C.beijerinckii Clb01, C.guangxiense Clgx01 and C.tyrobutyricum Clt01 showed higher growth rate and biomass than that of mono-culture in the early stage (before 24 h), but the accumulation of butyric acid decreased in varying degrees at the end of co-culture fermentation.The research on the interaction between Clostridium and N.902 could broaden our understanding of pit mud microbial interaction for aroma production.
Key words:  pit mud    Clostridium    Novisyntrophococcus    microbial interaction    short-chain fatty acids
收稿日期:  2022-05-11      修回日期:  2022-05-19           出版日期:  2022-08-15      发布日期:  2022-09-02      期的出版日期:  2022-08-15
基金资助: 国家自然科学基金项目(31901658);四川省固态酿造技术创新中心建设项目(2021ZYD0102)
作者简介:  第一作者:硕士研究生(柴丽娟副研究员和许正宏教授为共同通信作者,E-mail:chailijuan2017@jiangnan.edu.cn;zhenghxu@jiangnan.edu.cn)
引用本文:    
孙红,柴丽娟,方冠宇,等. 窖泥中梭菌和互营球菌交互作用对生长和短链脂肪酸代谢的影响[J]. 食品与发酵工业, 2022, 48(15): 24-32.
SUN Hong,CHAI Lijuan,FANG Guanyu,et al. Effect of co-culture of Clostridium strains and Novisyntrophococcus fermenticellae, isolated from pit mud, on growth and short-chain fatty acid metabolism[J]. Food and Fermentation Industries, 2022, 48(15): 24-32.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.032308  或          http://sf1970.cnif.cn/CN/Y2022/V48/I15/24
[1] CHAI L J, QIAN W, ZHONG X Z, et al.Mining the factors driving the evolution of the pit mud microbiome under the impact of long-term production of strong-flavor Baijiu[J].Applied and Environmental Microbiology, 2021, 87(17):e0088521.
[2] FU J X, CHEN L, YANG S Z, et al.Metagenome and analysis of metabolic potential of the microbial community in pit mud used for Chinese strong-flavor liquor production[J].Food Research International, 2021, 143:110294.
[3] LIU M K, TANG Y M, GUO X J, et al.Deep sequencing reveals high bacterial diversity and phylogenetic novelty in pit mud from Luzhou Laojiao cellars for Chinese strong-flavor Baijiu[J].Food Research International, 2017, 102:68-76.
[4] HU X L, DU H, REN C, et al.Illuminating anaerobic microbial community and cooccurrence patterns across a quality gradient in Chinese liquor fermentation pit muds[J].Applied and Environmental Microbiology, 2016, 82(8):2 506-2 515.
[5] LIU M K, TANG Y M, ZHAO K, et al.Contrasting bacterial community structure in artificial pit mud-starter cultures of different qualities:A complex biological mixture for Chinese strong-flavor Baijiu production[J].3 Biotech, 2019, 9(3):89.
[6] TAN G X, ZHOU R, ZHANG W Q, et al.Detection of viable and total bacterial community in the pit mud of Chinese strong-flavor liquor using propidium monoazide combined with quantitative PCR and 16S rRNA gene sequencing[J].Frontiers in Microbiology, 2020, 11:896.
[7] ZHENG X W, HAN B Z.Baijiu, Chinese liquor:History, classification and manufacture[J].Journal of Ethnic Foods, 2016, 3(1):19-25.
[8] CHAI L J, XU P X, QIAN W, et al.Profiling the Clostridia with butyrate-producing potential in the mud of Chinese liquor fermentation cellar[J].International Journal of Food Microbiology, 2019, 297:41-50.
[9] 钱玮, 陆震鸣, 柴丽娟, 等.泸型酒酒醅与窖泥中梭菌群落结构、演替和功能差异[J].生物工程学报, 2020, 36(6):1 190-1 197.QIAN W, LU Z M, CHAI L J, et al.Differences of the structure, succession and function of Clostridial communities between Jiupei and pit mud during Luzhou-flavour Baijiu fermentation[J].Chinese Journal of Biotechnology, 2020, 36(6):1 190-1 197.
[10] ZOU W, YE G B, ZHANG K Z.Diversity, function, and application of Clostridium in Chinese strong flavor Baijiu ecosystem:A review[J].Journal of Food Science, 2018, 83(5):1 193-1 199.
[11] ZHENG Y, HU X L, JIA Z J, et al.Co-occurrence patterns among prokaryotes across an age gradient in pit mud of Chinese strong-flavor liquor[J].Canadian Journal of Microbiology, 2020, 66(9):495-504.
[12] ZHANG Y C, KASTMAN E K, GUASTO J S, et al.Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes[J].Nature Communications, 2018, 9:336.
[13] BLASCHE S, KIM Y, MARS R A T, et al.Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community[J].Nature Microbiology, 2021, 6(2):196-208.
[14] WANG S J, TANG H Z, PENG F, et al.Metabolite-based mutualism enhances hydrogen production in a two-species microbial consortium[J].Communications Biology, 2019, 2:82.
[15] 柴丽娟, 钱玮, 钟小忠, 等.浓香型白酒发酵过程中窖内古菌群落分布特征[J].生物工程学报, 2020, 36(12):2 635-2 643.CHAI L J, QIAN W, ZHONG X Z, et al.Distribution of archaeal community in the mud pit during strong-flavor Baijiu fermentation[J].Chinese Journal of Biotechnology, 2020, 36(12):2 635-2 643.
[16] DU H, LIU B, WANG X S, et al.Exploring the microbial origins of p-cresol and its co-occurrence pattern in the Chinese liquor-making process[J].International Journal of Food Microbiology, 2017, 260:27-35.
[17] RÖTTJERS L, FAUST K.From hairballs to hypotheses-biological insights from microbial networks[J].FEMS Microbiology Reviews, 2018, 42(6):761-780.
[18] HU X L, DU H, XU Y.Identification and quantification of the caproic acid-producing bacterium Clostridium kluyveri in the fermentation of pit mud used for Chinese strong-aroma type liquor production[J].International Journal of Food Microbiology, 2015, 214:116-122.
[19] XU J L, SUN L P, XING X, et al.Culturing bacteria from fermentation pit muds of Baijiu with culturomics and amplicon-based metagenomic approaches[J].Frontiers in Microbiology, 2020, 11:1223.
[20] CHAI L J, FANG G Y, XU P X, et al.Novisyntrophococcus fermenticellae gen.nov., sp.nov., isolated from an anaerobic fermentation cellar of Chinese strong-flavour Baijiu[J].International Journal of Systematic and Evolutionary Microbiology, 2021, 71(9):DOI:10.1099/ijsem.0.004991.
[21] KUMAR S, STECHER G, LI M, et al.MEGA X:Molecular evolutionary genetics analysis across computing platforms[J].Molecular Biology and Evolution, 2018, 35(6):1 547-1 549.
[22] FELSENSTEIN J.Confidence limits on phylogenies:An approach using the bootstrap[J].Evolution;International Journal of Organic Evolution, 1985, 39(4):783-791.
[23] SEEMANN T.Prokka:rapid prokaryotic genome annotation[J].Bioinformatics, 2014, 30(14):2 068-2 069.
[24] HUERTA-CEPAS J, FORSLUND K, COELHO L P, et al.Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper[J].Molecular Biology and Evolution, 2017, 34(8):2 115-2 122.
[25] ZHAO Y B, JIA X M, YANG J H, et al.PanGP:A tool for quickly analyzing bacterial pan-genome profile[J].Bioinformatics, 2014, 30(9):1 297-1 299.
[26] CHARUBIN K, PAPOUTSAKIS E T.Direct cell-to-cell exchange of matter in a synthetic Clostridium syntrophy enables CO2 fixation, superior metabolite yields, and an expanded metabolic space[J].Metabolic Engineering, 2019, 52:9-19.
[27] ZOU W, YE G B, ZHANG K Z, et al.Analysis of the core genome and pangenome of Clostridium butyricum[J].Genome, 2021, 64(1):51-61.
[28] ZOU W, YE G B, LIU C J, et al.Comparative genome analysis of Clostridium beijerinckii strains isolated from pit mud of Chinese strong flavor Baijiu ecosystem[J].G3 Genes|Genomes|Genetics, 2021, 11(11):jkab317.
[29] UDAONDO Z, DUQUE E, RAMOS J L.The pangenome of the genus Clostridium[J].Environmental Microbiology, 2017, 19(7):2 588-2 603.
[30] 刘昊鹏, 刘超, 王雯, 等.基于厌氧微生物的碳链延长合成高价值化学品反应机理及研究进展:不同电子供体[J].北京化工大学学报(自然科学版), 2020, 47(5):1-17.LIU H P, LIU C, WANG W, et al.Advances in understanding the mechanism of chain elongation with anaerobic microbes for the synthesis of high value-added chemicals:The effect of different electron donors[J].Journal of Beijing University of Chemical Technology (Natural Science Edition), 2020, 47(5):1-17.
[31] YAO Y, FU B, HAN D F, et al.Formate-dependent acetogenic utilization of glucose by the fecal acetogen Clostridium bovifaecis[J].Applied and Environmental Microbiology, 2020, 86(23):e01870-e01820.
[32] SAN-VALERO P, ABUBACKAR H N, VEIGA M C, et al.Effect of pH, yeast extract and inorganic carbon on chain elongation for hexanoic acid production[J].Bioresource Technology, 2020, 300:122659.
[33] SAN-VALERO P, FERNÁNDEZ-NAVEIRA Á, VEIGA M C, et al.Influence of electron acceptors on hexanoic acid production by Clostridium kluyveri[J].Journal of Environmental Management, 2019, 242:515-521.
[34] DUBER A, ZAGRODNIK R, CHWIALKOWSKA J, et al.Evaluation of the feed composition for an effective medium chain carboxylic acid production in an open culture fermentation[J].Science of the Total Environment, 2020, 728:138814.
[1] 徐静静, 孙武, 詹晓北, 张洪涛, 朱莉, 高敏杰. 黄原胶寡糖对体外肠道菌群及其代谢产物的影响[J]. 食品与发酵工业, 2022, 48(7): 36-42.
[2] 王琳琳, 杨树荣, 王嘉良, 王刚, 张灏, 赵建新, 陈卫. 副干酪乳杆菌LPC-F通过促进Cajal间质细胞增殖缓解便秘[J]. 食品与发酵工业, 2022, 48(4): 1-9.
[3] 朱广素, 赵建新, 张灏, 陈卫, 王刚. 短双歧杆菌对Aβ1-42导致的阿尔兹海默症小鼠肠道菌群及代谢物的影响[J]. 食品与发酵工业, 2022, 48(3): 70-77.
[4] 毕天然, 黄钧, 张宿义, 陈晓茹, 陈苏祺, 母雨, 蔡晓波, 邱川峰, 周荣清. 不同窖龄及位置窖泥微生物群落和代谢组分的差异[J]. 食品与发酵工业, 2022, 48(2): 231-237.
[5] 孙武, 徐静静, 尹忠伟, 朱莉, 詹晓北. 蒸馏米酒蒸馏残液中多糖的分离及其益生活性研究[J]. 食品与发酵工业, 2022, 48(16): 72-78.
[6] 卜子晨, 夏永军, 艾连中, 熊智强, 宋馨, 王光强. 益生菌中短链脂肪酸的合成途径及功能性研究[J]. 食品与发酵工业, 2022, 48(14): 286-291.
[7] 高泽鑫, 孙武, 胥聆铭, 张蕾蕾, 朱莉, 詹晓北. 苏云金芽孢杆菌IX-01胞外多糖的体外益生特性[J]. 食品与发酵工业, 2022, 48(12): 1-8.
[8] 王静静, 王猛, 彭静怡, 周晓明, 冯悦, 伍新宇, 苏敏. 产地、年份、品种对葡萄干矿物元素含量的影响[J]. 食品与发酵工业, 2022, 48(11): 253-258.
[9] 朱慧越, 邹仁英, 许梦舒, 王琳琳, 田培郡, 陈卫, 王刚. 短链脂肪酸-酰化淀粉对小鼠抑郁样行为的缓解及机制[J]. 食品与发酵工业, 2021, 47(6): 26-33.
[10] 邹仁英, 朱慧越, 许梦舒, 田培郡, 张灏, 赵建新, 陈卫, 王刚. “精神益生菌”对慢性应激诱导的抑郁和便秘症状的缓解及机制研究[J]. 食品与发酵工业, 2021, 47(3): 1-9.
[11] 赵茂臻, 梁曦, 张喆, 吕优优, 王引, 刘同杰, 易华西, 公丕民, 张兰威. 植物乳杆菌F3-2联合甘露低聚糖通过上调短链脂肪酸水平抑制PPARγ改善小鼠肥胖[J]. 食品与发酵工业, 2021, 47(23): 78-82.
[12] 蔚慧欣, 韩英, 杨波. 清香型白酒不同生产期的产酸环境差异性研究[J]. 食品与发酵工业, 2021, 47(23): 319-324.
[13] 李鑫萍, 王琳琳, 赵建新, 张灏, 陈卫, 王刚. 两歧双歧杆菌FGSYC45M3缓解泻剂结肠及其作用机制分析[J]. 食品与发酵工业, 2021, 47(22): 42-48.
[14] 许凌凌, 程旺开, 周小楠. 普洱茶多糖对健康小鼠短链脂肪酸代谢与肠道菌群组成的调节作用[J]. 食品与发酵工业, 2021, 47(21): 115-122.
[15] 刘春雨, 衣大龙, 杨玉亮, 辛瑜, 顾正华, 刘怀高, 郭自涛, 张梁. 牦牛骨胶原蛋白肽体外调节肠道菌群的研究[J]. 食品与发酵工业, 2021, 47(16): 59-65.
[1] . Isolation and identification of anaerobic bacteria in the process of Maotai-flavor liquor brewing[J]. Food and Fermentation Industries, 0, (): 1 .
[2] YAO SU,YU Xue-jian,BAI Fei-rong,CAO Yan-hua,ZHAO Ting,ZHAI Lei,LIU Yang,GE Yuan-yuan,CHENG Kun,FENG Hui-jun,LING Kong,SHI Xiao-meng,WANG Yong-fang,ZHANG Xiao-xia,CHENG Chi. Research on the inventory of microbial species in Chinese traditional fermented foods[J]. Food and Fermentation Industries, 2017, 43(9): 238 .
[3] . The Effect of pH and Chopping Time on Gel Properties of Beef Surimi[J]. Food and Fermentation Industries, 2003, 29(9): 13 .
[4] Lin Feng,Ma Yong,Xu Yaguang,Jin Zhentao,Ren Wei,Cai Muyi. Study on the Quality Evaluation of Food-derived Oiigopeptides Based on the Molecular Weight Distribution[J]. Food and Fermentation Industries, 2008, 34(9): 128 .
[5] Pan Hongyang,Wang Shuying,Mo Haizhen. Determination of Seleno-amino Acids in Enriched-selenium Dehydrated Brassica Chinensis by RHPLC[J]. Food and Fermentation Industries, 2008, 34(10): 141 .
[6] Chen Mo,Wang Zhiwei,Hu Changying,Wu Xiyang,Wang Pingli. Rapid Evaluating of Antimicrobial Activity of Vanillin with the Microplate Reader in 96-cell Plate[J]. Food and Fermentation Industries, 2009, 35(5): 63 .
[7] . Recent advance and application of metaproteomics[J]. Food and Fermentation Industries, 2016, 42(5): 259 .
[8] . Development of the Health Food Enriched with γ-Aminobutyric Acid (GABA)[J]. Food and Fermentation Industries, 2002, 28(9): 69 .
[9] CUI Shu-mao,ZHAO Jian-xin,CHEN Wei,ZHANG Hao. Effect of acids produced by metabolizing carbohydrate of protectants on viability of Lactobacillus during freezing[J]. Food and Fermentation Industries, 2017, 43(3): 14 .
[10] SHEN Fang-lin,HUANG Shuang-cheng,HOU Peng-chen,GENG An-li,RUAN Wen-quan. A high effective autonomous replicative sequence in Saccharomyces cerevisiae[J]. Food and Fermentation Industries, 2017, 43(3): 20 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn