铜离子浓度是影响CotA漆酶在大肠杆菌中异源表达的重要因素。然而,对大肠杆菌表达细菌漆酶重组蛋白的发酵条件探索和优化研究较少。该文通过在培养过程中控制铜离子添加量,探究铜离子浓度对大肠杆菌重组菌及突变菌漆酶表达量的影响。重组CotA漆酶表达菌株在铜离子浓度为1 mmol/L时破碎液漆酶活性较高,达到约2 207 U/mL;突变细菌漆酶I421A表达菌株在铜离子浓度为1.5 mmol/L时破碎液漆酶活性较高,达到631 U/mL;突变细菌漆酶T466A表达菌株在铜离子浓度为1.5 mmol/L时破碎液漆酶活性较高,达到852 U/mL;突变细菌漆酶K464A表达菌株在铜离子浓度为1 mmol/L时破碎液漆酶活性较高,达到295 U/mL。菌株的表达量受铜离子浓度影响变化幅度较大,通过对铜离子添加条件的探究,对改善细菌漆酶表达量较低的问题有重要参考价值。
Abstract
Copper ion concentration is a critical factor influencing the heterologous expression of CotA laccase in Escherichia coli.However, limited studies have focused on optimizing the fermentation conditions for the expression of recombinant bacterial laccase proteins in E.coli.The study investigated the effect of copper ion concentration on the expression levels of recombinant and mutant laccase in E.coli by controlling the amount of copper ion added during cultivation.The recombinant CotA laccase-expressing strain showed the highest laccase activity in cell lysate at a copper ion concentration of 1 mmol/L, reaching approximately 2 207 U/mL.The mutant laccase I421A-expressing strain exhibited maximum laccase activity at 1.5 mmol/L copper ion, reaching 631 U/mL.Similarly, the mutant laccase T466A-expressing strain reached the highest activity at 1.5 mmol/L copper ion, with 852 U/mL, and the K464A mutant strain showed the highest activity at 1 mmol/L copper ion, reaching 295 U/mL.The expression levels of these strains varied significantly with changes in copper ion concentration.The study provides valuable insights into improving the low expression levels of bacterial laccases by optimizing copper ion supplementation.
关键词
细菌漆酶 /
异源表达 /
定点突变 /
蛋白表达量 /
铜离子
{{custom_keyword}} /
Key words
bacterial laccase /
heterologous expression /
site-directed mutagenesis /
protein expression level /
copper ion
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CLAUS H.Laccases:Structure, reactions, distribution[J].Micron, 2004, 35(1-2):93-96.
[2] PIONTEK K, ANTORINI M, CHOINOWSKI T.Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-a resolution containing a full complement of coppers[J].Journal of Biological Chemistry, 2002, 277(40):37663-37669.
[3] 陈洪惠. 通过循环排列研究Ⅰ型铜蛋白结构与功能的关系[D].天津:天津科技大学,2019.
CHEN H H.Probing the structure-function relationship of type Ⅰ copper protein by circular permutation[D].Tianjin:Tianjin University of Science & Technology,2019.
[4] OWUSU-FORDJOUR M.铜离子诱导和超声强化促进变色栓菌产漆酶及其在果汁澄清中的应用[D].镇江:江苏大学,2023.
OWUSU-FORDJOUR M.Improved Laccase production from Trametes versicolor by Copper Ion Induction and ultrasound intensification and its application in juice clarificatio[D].Zhenjiang:Jiangsu University,2023.
[5] DU W, SUN C, LIANG J, et al.Improvement of laccase production and its characterization by mutagenesis[J].Journal of Food Biochemistry, 2015, 39(1):101-108.
[6] 孙仁彤. 细菌漆酶的定向进化研究[D].长春:吉林大学, 2023.
SUN R T.Study on directed evolution of bacterial laccase[D].Changchun:Jilin University, 2023.
[7] XIE Y N,WANG R,LI Z,et al.Semi-rational engineering of microbial laccase Lac15 for enhanced activity[J].Acta Microbiologica Sinica,2022,62(4):1501-1512.
[8] DAI S, YAO Q, YU G, et al.Biochemical characterization of a novel bacterial laccase and improvement of its efficiency by directed evolution on dye degradation[J].Frontiers in Microbiology, 2021, 12:633004.
[9] WANG J Y, LU L, FENG F J.Improving the indigo carmine decolorization ability of a Bacillus amyloliquefaciens laccase by site-directed mutagenesis[J].Catalysts, 2017, 7(9):275.
[10] ZHENG X S, NG I S, YE C M, et al.Copper ion-stimulated McoA-laccase production and enzyme characterization in Proteus hauseri ZMd44[J].Journal of Bioscience and Bioengineering, 2013, 115(4):388-393.
[11] MURUGESAN R, VEMBU B.Production of extracellular laccase from the newly isolated Bacillus sp.PK4[J].African Journal of Biotechnology, 2016, 15(34):1813-1826.
[12] MALHOTRA K, SHARMA P, CAPALASH N.Copper and dyes enhance laccase production in γ-proteobacterium JB[J].Biotechnology Letters, 2004, 26(13):1047-1050.
[13] DECEMBRINO D, GIRHARD M, URLACHER V B.Use of copper as a trigger for the in vivo activity of E.coli laccase CueO:A simple tool for biosynthetic purposes[J].Chembiochem, 2021, 22(8):1470-1479.
[14] BUDDHIKA U V A, SAVOCCHIA S, STEEL C C.Copper induces transcription of BcLCC2 laccase gene in phytopathogenic fungus, Botrytis cinerea[J].Mycology, 2020, 12(1):48-57.
[15] ZENG J, ZHU Q H, WU Y C, et al.Oxidation of polycyclic aromatic hydrocarbons using Bacillus subtilis CotA with high laccase activity and copper independence[J].Chemosphere, 2016, 148:1-7.
[16] 卢娇娇. 铜(Cu2+)对糙皮侧耳生长发育的影响研究[D].郑州:河南农业大学, 2015.
LU J J.Effects of copper (Cu2+) on the growth and development of Pleurotus ostreatus[D].Zhengzhou:Henan Agricultural University, 2015.
[17] MUTANDA I, ZAHOOR, SETHUPATHY S, et al.Optimization of heterologous production of Bacillus ligniniphilus L1 laccase in Escherichia coli through statistical design of experiments[J].Microbiological Research, 2023, 274:127416.
[18] FOWLER L, ENGQVIST H, ÖHMAN-MÄGI C.Effect of copper ion concentration on bacteria and cells[J].Materials, 2019, 12(22):3798.
[19] KOSCHORRECK K, SCHMID R D, URLACHER V B.Improving the functional expression of a Bacillus licheniformis laccase by random and site-directed mutagenesis[J].BMC Biotechnology, 2009, 9:12.
[20] MARTINS L O, SOARES C M, PEREIRA M M, et al.Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat[J].Journal of Biological Chemistry, 2002, 277(21):18849-18859.
[21] HULLO M F, MOSZER I, DANCHIN A, et al.CotA of Bacillus subtilis is a copper-dependent laccase[J].Journal of Bacteriology, 2001, 183(18):5426-5430.
[22] ECE S L, LAMBERTZ C, FISCHER R, et al.Heterologous expression of a Streptomyces cyaneus laccase for biomass modification applications[J].AMB Express, 2017, 7(1):86.
[23] GUNNE M, AL-SULTANI D, URLACHER V B.Enhancement of copper content and specific activity of CotA laccase from Bacillus licheniformis by coexpression with CopZ copper chaperone in E.coli[J].Journal of Biotechnology, 2013, 168(3):252-255.
[24] KAUR K, SINGH G, GUPTA V, et al.Impact of phosphate and other medium components on physiological regulation of bacterial laccase production[J].Biotechnology Progress, 2017, 33(2):541-548.
[25] 余卓. 蓝铜胜肽诱导变色栓菌液态发酵产漆酶及其机制的研究[D].镇江:江苏大学, 2021.
YU Z.Study on laccase production by Trametes versicolor induced by blue copper peptide and its mechanism[D].Zhenjiang:Jiangsu University, 2021.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
安徽科技学院引进人才项目(SKYJ202006);安徽省高校自然科学研究重点项目(2022AH051635);安徽科技学院大学生创新课题项目(S202210879289);安徽科技学院横向合作项目(880578)
{{custom_fund}}