Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (1): 43-49    DOI: 10.13995/j.cnki.11-1802/ts.024449
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
毕赤酵母产伏马毒素B1羧酸酯酶发酵条件和培养基的优化
赵一凡, 常晓娇, 杜稳, 孙长坡, 刘虎军*
(国家粮食和物资储备局科学研究院,北京,100037)
Optimization of fermentation condition and medium for fumonisin B1 carboxylesterase production in Pichia pastoris
ZHAO Yifan, CHANG Xiaojiao, DU Wen, SUN Changpo, LIU Hujun*
(Academy of National Food and Strategic Reserves Administration,Beijing 100037, China)
下载:  HTML   PDF (1578KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高毕赤酵母重组菌产伏马毒素B1(fumonisin B1,FB1)羧酸酯酶的摇瓶发酵水平,以酶活力为指标,对发酵条件和培养基进行优化。通过单因素试验对发酵条件进行优化。通过Plackett-Burman试验筛选出关键培养基成分,再进行正交试验建立试验数据样本,最后建立误差反向传播神经网络模型进行预测并寻找最优发酵培养基组成。经优化得到的发酵条件:诱导温度28 ℃,初始pH 6.0,每24 h补加体积分数为1%的甲醇,诱导96 h;优化后发酵培养基组成:蛋白胨 23 g/L、KH2PO4 44 g/L、PTM4 (Pichia trace minerals 4)微量元素溶液 1.5 mL/L、K2SO4 7.15 g/L、MgSO4·7H2O 5.85 g/L和酵母粉 5 g/L。FB1羧酸酯酶酶活力达到402 U/mL以上,较优化前提高了1.19倍。优化后显著提高了重组菌株的产酶能力,研究结果为FB1羧酸酯酶发酵罐优化提供了基础数据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵一凡
常晓娇
杜稳
孙长坡
刘虎军
关键词:  伏马毒素  羧酸酯酶  发酵条件  培养基优化  人工神经网络    
Abstract: In order to improve the yield of fumonisin B1 (FB1) carboxylesterase produced by recombinant Pichia pastoris in shaking flask, the fermentation condition and medium were optimized with enzyme activity as index. The fermentation conditions were optimized through single factor experiment. The key components of fermentation medium were screened through Plackett-Burman experiment and then orthogonal experiment was carried out to establish the experimental data samples. Finally, the error Back Propagation (BP) neural network model was established to predict and search for the optimal composition of fermentation medium. After optimization, the optimal fermentation conditions were induction temperature 28 ℃, initial pH 6.0, 1% of methanol addition every 24 h, induction for 96 h. The optimal fermentation medium was peptone 23 g/L, KH2PO4 44 g/L, PTM4 1.5 mL/L, K2SO4 7.15 g/L, MgSO4·7H2O 5.85 g/L, yeast extract 5 g/L. FB1 carboxylesterase activity was over 402 U/mL, 1.19-fold higher than that of before optimization. Fermentation optimization in shaking flask can significantly improve the enzyme production capacity of recombinant strains. These results presented basic data for the optimization of FB1 carboxylesterase in fermenter.
Key words:  fumonisins    carboxylesterase    fermentation conditions    medium optimization    artificial neural network
收稿日期:  2020-05-11      修回日期:  2020-06-10                发布日期:  2021-02-03      期的出版日期:  2021-01-15
基金资助: 国家自然科学基金项目(U1604234);中央级公益性科研院所基本科研业务费专项资金课题(ZX1903-4;JY2001)
作者简介:  硕士,研究实习员(刘虎军助理研究员为通讯作者,E-mail:lhj@ags.ac.cn)
引用本文:    
赵一凡,常晓娇,杜稳,等. 毕赤酵母产伏马毒素B1羧酸酯酶发酵条件和培养基的优化[J]. 食品与发酵工业, 2021, 47(1): 43-49.
ZHAO Yifan,CHANG Xiaojiao,DU Wen,et al. Optimization of fermentation condition and medium for fumonisin B1 carboxylesterase production in Pichia pastoris[J]. Food and Fermentation Industries, 2021, 47(1): 43-49.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.024449  或          http://sf1970.cnif.cn/CN/Y2021/V47/I1/43
[1] YAMAZOE Y,KOYAMA N,KUMAGAI S.Possible role of phosphatidylcholine and sphingomyelin on fumonisin B1-mediated toxicity[J].Food Safety,2017,5(3):75-97.
[2] ZHU Y,HASSAN Y I,WATTS C,et al.Innovative technologies for the mitigation of mycotoxins in animal feed and ingredients-A review of recent patents[J].Animal Feed Science and Technology,2016,216:19-29.
[3] OMURTAG G Z.Fumonisins,trichothecenes and zearalenone in cereals[J].International Journal of Molecular Sciences,2008,9(11):2 062-2 090.
[4] CAO C,ZHU X,LI X,et al.Assessment of ionic homeostasis imbalance and cytochrome P450 system disturbance in mice during fumonisin B1 (FB1) exposure[J].Chemosphere,2020.DOI:10.1016/j.chemosphere.2020.126393.
[5] WEI T,ZHU W,PANG M,et al.Natural occurrence of fumonisins B1 and B2 in corn in four provinces of China[J].Food Additives & Contaminants:Part B,2013,6(4):270-274.
[6] FALLAH B,ZAINI F,GHAZVINI R D,et al.The antagonistic effects of Candida parapsilosis on the growth of Fusarium species and fumonisin production[J].Current Medical Mycology,2016,2(1):1-6.
[7] MINERVINI F,GARBETTA A,D’ANTUONO I,et al.Toxic mechanisms induced by fumonisin B1 mycotoxin on human intestinal cell line[J].Archives of Environmental Contamination and Toxicology,2014,67(1):115-123.
[8] 杨李梅, 苏建明,雷红宇,等.伏马毒素研究进展[J].动物医学进展,2014,35(3):97-100.
YANG L M,SU J M,LEI H Y,et al.Progress on fumonisins[J].Progress in Veterinary Medicine, 2014,35(3):97-100.
[9] BRYŁA M,WAŚKIEWICZ A,SZYMCZYK K,et al.Effects of pH and temperature on the stability of fumonisins in maize products[J].Toxins,2017,9(3):88-103.
[10] ZHU Y,HASSAN Y I,LEPP D,et al.Strategies and methodologies for developing microbial detoxification systems to mitigate mycotoxins[J].Toxins,2017,9(4):130-155.
[11] HEINL S,HARTINGER D,THAMHESL M,et al.Degradation of fumonisin B1 by the consecutive action of two bacterial enzymes[J].Journal of Biotechnology,2010,145(2):120-129.
[12] ADDITIVES E P O,FEED P O S U I A.Scientific opinion on the safety and efficacy of fumonisin esterase (FUMzyme®) as a technological feed additive for pigs[J].EFSA Journal,2014,12(5):3 667-3 685.
[13] YANG Y,GAO M,YU X,et al.Optimization of medium composition for two-step fermentation of vitamin C based on artificial neural network-genetic algorithm techniques[J].Biotechnology & Biotechnological Equipment,2015,29(6):1 128-1 134.
[14] SHI Y,GAI G,ZHAO X,et al.Back propagation neural network (BPNN) simulation model and influence of operational parameters on hydrogen bio-production through integrative biological reactor (IBR) treating wastewater[C].2010 4th International Conference on Bioinformatics and Biomedical Engineering,2010:1-4.
[15] 坚乃丹. 伏马毒素B1降解酶YD的异源表达及其酶学性质研究 [D].天津:天津科技大学,2018.
JIAN N D.Heterologous expression and characterization of fumonisin B1 degradation enzyme YD [D].Tianjin:Tianjin University of Science and Technology,2018.
[16] 李飞, 喻晓蔚,沙冲,等.基因拷贝数和甲醇浓度对重组毕赤酵母产华根霉脂肪酶的影响[J].微生物学通报,2011,38(3):301-309.
LI F,YU X W,SHA C,et al.Impact of gene dosage and methanol concentration on Rhizopus chinensis recombinant lipase production in Pichia pastoris[J].Microbiology China,2011,38(3):301-309.
[17] 陈明祥, 谢万勇,廖锡豪,等.表面展示南极假丝酵母脂肪酶B的毕赤酵母FM22发酵培养基响应面优化[J].中国酿造,2012,31(10):52-56.
CHEN M X,XIE W Y,LIAO X H,et al.The response surface optimization on FM22 induction medium of CALB displayed on Pichia pastoris cell surface production[J].China Brewing,2012,31(10):52-56.
[18] CHAROENRAT T,KHUMRUAENGSRI N,PROMDONKOY P,et al.Improvement of recombinant endoglucanase produced in Pichia pastoris KM71 through the use of synthetic medium for inoculum and pH control of proteolysis[J].Journal of Bioscience and Bioengineering,2013,116(2):193-198.
[19] WANDERLEY M S,OLIVEIRA C,BRUNESKA D,et al.Influence of trace elements supplementation on the production of recombinant frutalin by Pichia pastoris KM71H in fed-batch process[J].Chemical Papers,2013,67(7):682-687.
[20] 陈柳, 马广大.大气中SO2浓度的小波分析及神经网络预测[J].环境科学学报,2006,26(9):1 553-1 558.
CHEN L,MA G D.Study on wavelet analysis and neural network prediction of SO2 concentration in air[J].Acta Scientiae Circumstantiae, 2006,26(9):1 553-1 558.
[21] 刘瑞江, 张业旺,闻崇炜,等.正交试验设计和分析方法研究[J].实验技术与管理,2010,27(9):52-55.
LIU R J,ZHANG Y W,WEN C W,et al.Study on the design and analysis methods of orthogonal experiment[J].Experimental Technology and Management,2010,27(9):52-55.
[22] MA H,LI H,GANG J,et al.Optimization of ethanol fermentation from fruit and vegetable waste by plackett-burman and orthogonal experimental design[J].BioResources,2019,14(1):1 210-1 218.
[23] 吴娜, 赵重博,胡美变,等.BP-ANN 结合正交试验法优化白附子多糖提取工艺[J].中成药,2016,38(6):1 248-1 253.
WU N,ZHAO C B,HU M B,et al.Optimizing the extraction of polysaccharides from Typhonii rhizoma by BP-ANN combined with orthogonal test[J].Chinese Traditional Patent Medicine,2016,38(6):1 248-1 253.
[24] 王云龙, 刘松,堵国成,等.基于人工神经网络的L-天冬酰胺酶发酵培养基优化[J].食品与发酵工业,2018,44(8):27-33.
WANG Y L,LIU S,DU G C,et al.Optimization of L-asparaginase fermentation medium based on artificial neural network[J].Food and Fermentation Industries,2018,44(8):27-33.
[25] PENG W,ZHONG J,YANG J,et al.The artificial neural network approach based on uniform design to optimize the fed-batch fermentation condition:Application to the production of iturin A[J].Microbial Cell Factories,2014,13(1).DOI:10.1186/1475-2859-13-54.
[26] DASARI V R R K,DONTHIREDDY S R R,NIKKU M Y,et al.Optimization of medium constituents for Cephalosporin C production using response surface methodology and artificial neural networks[J].Journal of Biochemical Technology,2009,1(3):69-74.
[1] 赵雨, 郭建华, 张春枝. 蜡状芽孢杆菌ZY12产磷脂酶D的影响因素[J]. 食品与发酵工业, 2021, 47(9): 57-62.
[2] 刘梦, 缪礼鸿, 刘蒲临, 王霜, 高瑞杰. 马克斯克鲁维酵母与酿酒酵母混合发酵对液态法黄酒风味的影响[J]. 食品与发酵工业, 2021, 47(9): 160-167.
[3] 李静竹, 胡梦君, 张建华. 蛋白质谷氨酰胺酶的重组表达与发酵条件优化[J]. 食品与发酵工业, 2021, 47(3): 294-301.
[4] 郭李坤, 曾伟主, 周景文. 光滑球拟酵母发酵生产丙酮酸的补料过程优化[J]. 食品与发酵工业, 2020, 46(7): 10-16.
[5] 赵鹏鹏, 雷淑珍, 徐晓光, 王蓉, 蒋春美, 师俊玲. 培养基组成对贝莱斯芽孢杆菌产抑真菌成分的影响[J]. 食品与发酵工业, 2020, 46(5): 147-151.
[6] 于瑶, 李岩松, 卢士英, 杨勇, 胡盼, 任洪林, 柳增善, 周玉. 玉米中伏马毒素B1、B2间接竞争酶联免疫吸附方法的建立[J]. 食品与发酵工业, 2020, 46(23): 193-197.
[7] 相雯研, 张娟, 堵国成, 李少垒, 顾芷玮. 天然酵母中烘焙酵母的分离鉴定与性能优化[J]. 食品与发酵工业, 2020, 46(22): 1-7.
[8] 邝嘉华, 黄燕燕, 胡金双, 余佳佳, 周钦育, 赵珊, 刘冬梅. 解淀粉芽孢杆菌DMBA-K4高产胞外多糖的发酵条件优化及其抗氧化活性研究[J]. 食品与发酵工业, 2020, 46(22): 28-35.
[9] 杨妮, 刘素纯, 王继刚, 李幸, 刘枭雄. 冠突散囊菌产胞外黑色素发酵条件优化及稳定性研究[J]. 食品与发酵工业, 2020, 46(16): 37-42.
[10] 连思雨, 谢瑜杰, 张紫娟, 范春林, 王明林, 陈辉. 多元素分析结合化学计量学方法快速判别宁夏和青海枸杞[J]. 食品与发酵工业, 2020, 46(13): 250-254.
[11] 胡鹏飞, 陈磊, 许赣荣, 张薄博. 以小米为基质牛樟芝固态发酵高产antroquinonol的条件优化[J]. 食品与发酵工业, 2019, 45(9): 137-144.
[12] 管彬彬, 陈彬. 基于可视嗅觉指纹技术的水产品新鲜度快速表征[J]. 食品与发酵工业, 2019, 45(9): 171-175.
[13] 周剑, 方志锴, 孙菲, 江红. 一株链霉菌的鉴定及其产bafilomycin A1的发酵工艺研究[J]. 食品与发酵工业, 2019, 45(6): 30-35.
[14] 吴丹丹, 庄敏, 焦丹, 周中凯. 解淀粉芽孢杆菌产葡甘聚糖酶的条件优化及酶学性质研究[J]. 食品与发酵工业, 2019, 45(4): 13-18.
[15] 贾玉香, 耿晓琦, 黄正梅, 杜鹏, 郑宇, 宋佳. 根瘤菌多糖的发酵优化及抗肿瘤活性[J]. 食品与发酵工业, 2019, 45(20): 144-148.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn