Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (3): 107-113    DOI: 10.13995/j.cnki.11-1802/ts.024655
  生产与科研应用 本期目录 | 过刊浏览 | 高级检索 |
利用蜂蜜接合酵母合成海藻糖
张敏倩1, 刘功良1*, 费永涛1, 白卫东1, 艾连中2, 俞剑燊3
1(仲恺农业工程学院 轻工食品学院,广东 广州,510225)
2(上海理工大学 医疗器械与食品学院,上海,200093)
3(上海金枫酒业股份有限公司,上海,200120)
Synthesis of trehalose by Zygosaccharomyces mellis
ZHANG Minqian1, LIU Gongliang1*, FEI Yongtao1, BAI Weidong1, AI Lianzhong2, YU Jianshen3
1(College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China)
2(School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)
3(Shanghai Jinfeng Wine Co.Ltd., Shanghai 200120, China)
下载:  HTML   PDF (5433KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用蜂蜜接合酵母LGL-2可耐受高糖浓度、应激代谢合成海藻糖的特性,研究了不同发酵时间、接种量、培养温度、葡萄糖初始质量浓度、转速对蜂蜜接合酵母代谢积累产生海藻糖的影响,并通过响应面优化了发酵工艺参数。结果表明,在发酵96 h、接种量10%(体积分数)、葡萄糖初始质量浓度300 g/L、温度24 ℃、转速180 r/min的条件下,海藻糖的质量分数可达92.32 mg/g干酵母,相比优化前提高了29.34%,该研究为蜂蜜接合酵母的应用及海藻糖的生物合成提供了借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张敏倩
刘功良
费永涛
白卫东
艾连中
俞剑燊
关键词:  蜂蜜接合酵母  海藻糖  响应面优化  发酵工艺    
Abstract: At present, research on the synthesis of trehalose with food grade microorganisms has attracted much attention. Since Zygosaccharomyces mellis LGL-2 can tolerate high glucose concentration and synthesize trehalose through stress metabolism, the effects of fermentation time, inoculation amount, culture temperature, initial concentration of glucose and rotational speed on trehalose production by LGL-2 were studied. The optimal fermentation conditions were determined by response surface methodology. The optimal conditions were determined as follows: 96 h, 10% inoculation size, 300 g/L initial glucose concentration, 24 ℃ and 180 r/min. Under the optimized conditions, the yield of trehalose was 92.32 mg/g dry yeast, which was 29.34% higher than that before optimization. The results provide reference for the application of Z. mellis and the biosynthesis of trehalose.
Key words:  Zygosaccharomyces mellis    trehalose    response surface optimization    fermentation process
收稿日期:  2020-06-05      修回日期:  2020-07-05           出版日期:  2021-02-15      发布日期:  2021-03-08      期的出版日期:  2021-02-15
基金资助: 广东省重点领域研发计划项目(2018B020206001);广东省2019年省级农业科技创新及推广项目(2019KJ101)
作者简介:  硕士研究生(刘功良教授为通讯作者,E-mail:gongliangliu@126.com)
引用本文:    
张敏倩,刘功良,费永涛,等. 利用蜂蜜接合酵母合成海藻糖[J]. 食品与发酵工业, 2021, 47(3): 107-113.
ZHANG Minqian,LIU Gongliang,FEI Yongtao,et al. Synthesis of trehalose by Zygosaccharomyces mellis[J]. Food and Fermentation Industries, 2021, 47(3): 107-113.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.024655  或          http://sf1970.cnif.cn/CN/Y2021/V47/I3/107
[1] 杨少龙, 吕珊珊,刘波,等.海藻糖的作用及生产方法研究进展[J].食品工业,2016,37(10):212-216.
YANG S L,LV S S,LIU B,et al.Recent progress in trehalose function and production methods[J].The Food Industry,2016,37(10):212-216.
[2] MESSINA M S,KO J H,YANG Z Y,et al.Effect of trehalose polymer regioisomers on protein stabilization[J].Polymer Chemistry,2017,8(33):4 781-4 788.
[3] CORDONE L,COTTONE G,CUPANE A,et al.Proteins in saccharides matrices and the trehalose peculiarity:Biochemical and biophysical properties[J].Current Organic Chemistry,2015,19(17):1 684-1 706.
[4] 马路凯, 张宾,王晓玲,等.海藻糖、海藻胶及寡糖对蒸煮南美白对虾的抗冻保水作用[J].食品科学,2015,36(16):266-271.
MA L K,ZHANG B W,WANG X L,et al.Comparison of the cryoprotective effects of trehalose,alginate and alginate-derived oligosaccharides on cooked shrimp(Litopenaeus vannamei)[J].Food Science,2015,36(16):266-271.
[5] 张丽杰, 张雪莲,邸进申.新型食品添加剂海藻糖的发展前景[J].中国食品添加剂,2004(2):61-65.
ZHANG L J,ZHANG X L,DI J S,et al.Developmental foreground of a new food additive-trehalose[J].China Food Additives,2004(2):61-65.
[6] 朱明. 海藻糖的功能及其应用[J].粮食科技与经济,2003(5):43-44.
ZHU M.Function and application of trehalose[J].Grain Science and Technology and Economy,2003(5):43-44.
[7] CHRISTOVA,LANG S,WRAY V,et al.Production,structural elucidation and in vitro antitumor activity of trehalose lipid biosurfactant from Nocardia farcinica strain[J].Journal of Microbiology and Biotechnology,2015,25(4):439-447.
[8] ARAI C,ARAI N,MIZOTE A,et al.Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance[J].Nutrition Research,2010,30(12):840-848.
[9] TANAKA M,MACHIDA Y,NIU S,et al.Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease[J].Nature Medicine,2004,10(2):148-154.
[10] MIZUNOE Y,WATANABE S,SUDO Y,et al.Trehalose protects against oxidative stress by regulating the Keap1-Nrf2 and autophagy pathways[J].Redox Biology,2018,15:115-124.
[11] 曲茂华, 张凤英,何名芳,等.海藻糖生物合成及应用研究进展[J].食品工业科技,2014,35(16):358-362.
QU M H,ZHANG F Y,HE M F,et al.Research progress in trehalose biosynthesis and applications[J].Science and Technology of Food Industry,2014,35(16):358-362.
[12] 涂国云.海藻糖的性质、生产及应用[J].山西食品工业,2003(3):33-35.
TU G Y.Properties,production and application of trehalose[J].Food Engineering,2003(3):33-35.
[13] GÓMEZ D L,GILDAY A,FEIL R,et al.AtTPS1-mediated trehalose 6-phosphate synthesis is essential for embryogenic and vegetative growth and responsiveness to ABA in germinating seeds and stomatal guard cells[J].The Plant Journal,2010,64(1):1-13.
[14] 张玉华, 凌沛学,籍保平.海藻糖的研究现状及其应用前景[J].食品与药品,2005,7(3):8-13.
LING P X,JI B P.Current status of research for trehalose and its prospective applications[J].Food and Drug,2005,7(3):8-13.
[15] LEE J H,Lee K H,LIM C G,et al.Cloning and expression of a trehalose synthase from Pseudomonas stutzeri CJ38 in Escherichia coli for the production of trehalose[J].Applied Microbiology and Biotechnology,2005,68(2):213-219.
[16] 黄珍. 海藻糖合酶基因的克隆、表达及固定化研究[D].武汉:湖北工业大学,2018.
HUANG Z.Research on cloning,expression and immobilization of trehalose synthase[D].Wuhan:Hubei University of Technology,2018.
[17] 池小琴. 酿酒酵母海藻糖代谢工程与抗逆性相关机制研究[D].杭州:浙江大学,2010.
CHI X Q.The metabolic engineering of trehalose and related mechanisms of stress resistance in Saccharomyces cerevisiae[D].Hang zhou:Zhejiang University,2010.
[18] LI Ning,WANG Hengwei,LI Lijuan,et al.Integrated approach to producing high-purity trehalose from maltose by the yeast yarrowia lipolytica displaying trehalose synthase (TreS) on the cell surface[J].Journal of Agricultural and Food Chemistry,2016,64(31):6 179-6 187.
[19] 洪厚胜, 窦冰然,郭会明.基于面包酵母中海藻糖提取工艺优化及菌株筛选的高密度培养工艺[J].食品科学,2018,39(6):122-129.
HONG H S,DOU B R,GUO H M.Optimization of extraction process for trehalose from baker's yeast for strain screening and high density culture[J].Food Science,2018,39(6):122-129.
[20] 杨晓红, 王元秀,郑明洋.响应面法优化啤酒酵母海藻糖提取工艺[J].济南大学学报(自然科学版),2013,27(3):270-274.
YANG X H,WANG Y X,ZHENG M Y,et al Optimization of extraction process for yeast trehalose by response surface method[J].Journal of University of Jinan(Science and Technology),2013(3):270-274.
[21] 池振明, 梁丽琨,朱开玲,等.酵母海藻糖的代谢与调控研究进展[J].中国海洋大学学报(自然科学版),2006(2):209-214.
CHI Z M,LIANG L K,ZHU K L,et al.Advanced in metabolism and regulation of trehalose in yeast[J].Periodical of Ocean University of China,2006(2):209-214.
[22] 胡梦蝶, 陈雄,李欣,等.不同胁迫条件对鲁氏酵母胞内海藻糖积累的影响研究[J].食品工业科技,2016,37(11):130-133.
HU M D,CHEN X,LI X,et al.Intracellular trehalose metabolism characteristics of Zygosaccharomyces rouxii under different stresses[J].Science and Technology of Food Industry,2016,37(11):130-133.
[23] 彭郦, 曾新安.高糖胁迫对生长期酿酒酵母生理代谢的影响[J].现代食品科技,2011,27(4):397-399.
PENG L,ZENG X A.Effect of High-glucose addition on metabolism of Saccharomyces cerevisiae during logarithm phrase[J].Modern Food Science and Technology,2011,27(4):397-399.
[24] MORAN J W,WITTER L D.Effect of sugars on D-arabitol production and glucose metabolism in Saccharomyces rouxii[J].Journal of Bacteriology,1979,138(3):823-831.
[25] 安宁. 酵母菌生产海藻糖的研究[D].无锡:江南大学,2012.
AN N.Study on the production of trehalose by yeast[D].Wuxi:Jiangnan University,2012.
[26] 安宁, 葛向阳,张伟国.酵母发酵过程中海藻糖的定性与定量测定[J].食品与生物技术学报,2011,30(4):636-640.
AN N,GE X Y,ZHANG W G.Qualitative and quantitative determination of trehalose in yeast extract[J].Journal of Food Science and Biotechnology,2011,30(4):636-640.
[27] 关凤梅. 生物化学实验[M].济南:山东轻工业学院,2003.
GUAN F M.Biochemistry experiment[M].Jinan:Shandong Polytechnic University,2003.
[28] 李艳玲, 张显忠,苗苗,等.蒽酮-硫酸法测定海藻糖含量显色条件的改进[J].食品工业科技,2009,30(2):296-298.
LI Y L,ZHANG X Z,MIAO M.Improvement of chromogenic conditions on trehalose determination by anthrone-sulphuric acid method[J].Science and Technology of Food Industry,2009,30(2):296-298.
[29] 王玲, 匡钰,唐德强.增香型菠萝果酒活性干酵母制备过程中内源海藻糖积累条件优化[J].热带作物学报,2013,34(7):1 347-1 353.
WANG L,KUANG Y,TANG D Q.Optimizing endogenous trehalose accumulation during the preparation of aroma-producing active dried yeast for pineapple wine[J].Chinese Journal of Tropical Crops,2013,34(7):1 347-1 353.
[30] 柴丽红, 徐磊.酿酒酵母积累海藻糖条件的研究[J].河南工业大学学报(自然科学版),2007(6):24-28.
CHAI L H,XU L.Study on trehalose accumulation conditions of Saccharomyces cerevisiae[J].Journal of Henan University of Technology(Natural Science Edition),2007(6):24-28.
[31] 赵玉巧. 产海藻糖酵母的培养条件优化研究[J].淮海工学院学报(自然科学版),2010,19(1):80-83.
ZHAO Y Q.Study on the optimized culture conditions for yeast producing trehalose[J].Journal of Huaihai Institute of Technology(Natural Science Edition),2010,19(1):80-83.
[32] 朱宝生, 刘功良,白卫东,等.耐高糖酵母筛选及其高糖胁迫机制的研究进展[J].中国酿造,2016,35(6):11-14.
ZHU B S,LIU G L,BAI W D.Screening of high-sugar-tolerant yeast and research on its high sugar stress mechanism[J].China Brewing,2016,35(6):11-14.
[33] 郑辉杰, 张洪起,刘伟,等.从啤酒废酵母中提取海藻糖的工艺研究[J].酿酒科技,2008(5):101-104.
ZHENG H J,ZHANG H Q,LIU W.Extraction of trehalose from waste beer yeast[J].Liquor-Making Science & Technology,2008(5):101-104.
[1] 陈敦武, 刘翠翠, 陈雄, 代俊, 王志, 姚鹃, 李沛, 李欣. 不同食品酵母对葡萄糖的流加强度和热激压力的生理响应[J]. 食品与发酵工业, 2021, 47(8): 21-26.
[2] 顾欣, 高涛, 刘梦雅, 丛之慧, 张诚雅, 肖乐艳, 李迪, 胡景涛. 梁平柚柚皮多糖的提取、结构解析及抗氧化能力研究[J]. 食品与发酵工业, 2021, 47(7): 137-145.
[3] 易媛, 左勇, 黄雪芹, 杨建飞, 徐佳, 马倩, 胡琨. 食用植物酵素开发关键技术研究进展[J]. 食品与发酵工业, 2021, 47(7): 316-321.
[4] 张红岩, 张妮, 杨梦莹, 刘聪, 杨立芳, 申乃坤, 姜明国. 拟蕈状芽孢杆菌Gxun-30产角蛋白酶液体发酵条件优化[J]. 食品与发酵工业, 2021, 47(4): 136-143.
[5] 曹桢, 陈善敏, 黄小雨, 蒋和体. 紫薯醋发酵工艺优化及品质分析[J]. 食品与发酵工业, 2021, 47(4): 195-201.
[6] 赵志军, 张艳珠, 刘延波, 周平平, 葛少华, 孙西玉. 高产酯化酶细菌的复合诱变选育及固态发酵条件优化[J]. 食品与发酵工业, 2021, 47(2): 174-181.
[7] 白晶, 朱秋劲, 黄小艳, 陈秀莉, 李仲佰, 杨睿颖, 陈玉芹. 基于猪后腿肉的绿色减菌方法组合与配方优化[J]. 食品与发酵工业, 2021, 47(19): 201-207.
[8] 苏孟开, 罗登林, 徐云凤, 李佩艳, 向进乐, 徐宝成, 黄继红, 张康逸. 无麸质玉米馒头配方优化及影响因素分析[J]. 食品与发酵工业, 2021, 47(17): 220-227.
[9] 文鹤, 查双龙, 胡祥飞, 张盼文, 杨慧林, 王筱兰. 曲霉型豆豉快速发酵工艺生产过程中的挥发性成分对比分析[J]. 食品与发酵工业, 2021, 47(16): 239-246.
[10] 胡莉萍, 王志峰, 朱松, 李玥. 酵母发酵对饼干品质的影响[J]. 食品与发酵工业, 2021, 47(15): 242-247.
[11] 刘红强, 于学健, 翟磊, 白飞荣, 姚粟. 耐高温菌株大曲高温放线菌CICC 10681培养条件的响应面优化[J]. 食品与发酵工业, 2021, 47(14): 123-129.
[12] 孙溪, 刘海晴, 张军, 范志华, 黄亮. 高表达MAL62基因对面包酵母耐高糖的影响[J]. 食品与发酵工业, 2021, 47(1): 8-13.
[13] 刘蒙佳, 周强, 戴玉梅, 雷昌贵, 丁立云. 不同解冻方法及添加抗冻剂处理对冷冻海鲈鱼鱼片解冻品质的影响[J]. 食品与发酵工业, 2020, 46(8): 210-218.
[14] 邝嘉华, 黄燕燕, 胡金双, 余佳佳, 周钦育, 赵珊, 刘冬梅. 解淀粉芽孢杆菌DMBA-K4高产胞外多糖的发酵条件优化及其抗氧化活性研究[J]. 食品与发酵工业, 2020, 46(22): 28-35.
[15] 张月, 崔旋旋, 刘英学, 盖永强, 朴美子. 茯砖茶中冠突散囊菌的分离鉴定及其发酵工艺和生物活性研究[J]. 食品与发酵工业, 2020, 46(22): 202-207.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn