Please wait a minute...
 
 
食品与发酵工业  2021, Vol. 47 Issue (9): 268-274    DOI: 10.13995/j.cnki.11-1802/ts.026105
  分析与检测 本期目录 | 过刊浏览 | 高级检索 |
一种荧光DNA生物传感器用于食品中非洲猪瘟病毒的检测
乐莉1, 张亚青1, 宋尔群2*, 陶晓奇1*
1(西南大学 食品科学学院,重庆,400715)
2(西南大学 药学院,重庆,400715)
A fluorescent DNA biosensor for the detection of African swine fever virus in foods
YUE Li1, ZHANG Yaqing1, SONG Erqun2*, TAO Xiaoqi1*
1(College of Food Science,Southwest University,Chongqing 400715,China)
2(College of Pharmaceutical Sciences,Southwest University,Chongqing 400715,China)
下载:  HTML  PDF (3843KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 非洲猪瘟(African swine fever,ASF)是由非洲猪瘟病毒(African swine fever virus,ASFV)感染家猪和野猪引起的一种急性出血性严重传染病。ASF的持续传播不仅影响到居民的肉类供应,也影响到全球肉类供应的安全,因此,建立灵敏特异的ASFV检测方法已经成为一个食品安全重要热点。利用量子点(quantum dots,QDs)和纳米金(Au nanoparticles,AuNPs)构建了一种基于荧光共振能量转移(fluorescence resonance energy transfer, FRET)的DNA传感器,基于单链DNA互补配对原则用于ASFV特异性基因检测。在靶DNA缺失的情况下,ss-DNA-QDs(探针 1)将与ss′-DNA-AuNPs (探针 2)杂交,供体QDs与受体AuNPs距离变近,引发FRET效应,QDs的荧光被AuNPs淬灭。然而,靶DNA存在的情况下,靶DNA与探针2竞争结合探针1,导致FRET被破坏,QDs的荧光恢复。该生物传感器可在1.25 h内快速检测ASFV靶DNA,检出限为0.72 μmol/L,在猪肉、火腿肠和猪肉饺子等食品中的回收率为82.00%~108.00%,变异系数为0.02%~0.15%。该研究提出了一种简单、快速的检测食品中ASFV基因片段的方法。在以后的研究中,可以通过优化条件来提高灵敏度。此外,这种策略可以扩展到其他DNA、病毒或蛋白质的传感应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
乐莉
张亚青
宋尔群
陶晓奇
关键词:  非洲猪瘟  非洲猪瘟病毒  荧光共振能量转移  DNA检测  食品安全    
Abstract: African swine fever (ASF) is an acute, hemorrhagic and severe infectious disease caused by African swine fever virus (ASFV) which infect domestic pigs and wild boars. The continued spread of ASF not only affects the meat supply of residents, but also the safety of global meat supplied. Therefore, the establishment of sensitive and specific ASFV detection method has become an important issue in food safety. In this work, we reported a fluorescence resonance energy transfer (FRET) DNA biosensor based on quantum dots (QDs) and gold nanoparticles (AuNPs) for ASFV specific gene detection. In the absence of target DNA, ss-DNA-QDs (Probe 1) will hybridize with ss'-DNA-AuNPs (Probe 2) making the donor (QDs) and the acceptor (AuNPs) close to each other and trigger FRET effect, and the fluorescence of QDs was quenched by AuNPs. However, in the presence of target DNA, the target DNA competed with Probe 2 to bind Probe 1, which resulted in the destruction of FRET and recovery of the fluorescence of QDs. The developed biosensor in here could achieve rapid detection of ASFV target DNA with the detection limit of 0.72 μmol/L in 1.25 h. Which was verified in pork, ham sausage, and pork dumplings with recoveries from 82.00% to 108.00% and variation coefficients of 0.02%-0.15%. This study proposed a new, simple and rapid method to detect ASFV gene fragment in food. In addition, this strategy can be used to other DNA, virus or protein sensing applications.
Key words:  African swine fever    African swine fever virus    fluorescence resonance energy transfer (FRET)    DNA detection    food safety
收稿日期:  2020-11-07      修回日期:  2020-11-25           出版日期:  2021-05-15      发布日期:  2021-06-03      期的出版日期:  2021-05-15
基金资助: 国家自然科学基金面上项目(31672605);重庆市基础研究与前沿探索项目(cstc2018jcyjAX0242);中国博士后科学基金面上资助项目(016M590855);重庆市博士后科研项目特别资助项目(Xm2017074)
作者简介:  硕士研究生(宋尔群教授和陶晓奇副教授为共同通讯作者,E-mail:77949883@qq.com;77179000@qq.com)
引用本文:    
乐莉,张亚青,宋尔群,等. 一种荧光DNA生物传感器用于食品中非洲猪瘟病毒的检测[J]. 食品与发酵工业, 2021, 47(9): 268-274.
YUE Li,ZHANG Yaqing,SONG Erqun,et al. A fluorescent DNA biosensor for the detection of African swine fever virus in foods[J]. Food and Fermentation Industries, 2021, 47(9): 268-274.
链接本文:  
http://sf1970.cnif.cn/CN/10.13995/j.cnki.11-1802/ts.026105  或          http://sf1970.cnif.cn/CN/Y2021/V47/I9/268
[1] GABRIEL C,BLOME S,MALOGOLOVKIN A,et al.Characterization of African swine fever virus caucasus isolate in European wild boars[J]. Emerging Infectious Diseases, 2011, 17(12):2 342-2 345.
[2] ZAKARYAN H,REVILLA Y.African swine fever virus:Current state and future perspectives in vaccine and antiviral research[J].Veterinary Microbiology,2016,185:15-19.
[3] PENRITH M L,PEREIRA C L,DA SILVA M M R L,et al.African swine fever in Mozambique:Review,risk factors and considerations for control[J].Onderstepoort Journal of Veterinary Research,2007,74(2):149-160.
[4] TUBIASH H S.Quantity production of leukocyte cultures for cultures use in hemadsorption tests with African swine fever virus[J].American Journal of Veterinary Research,1963,24:381-384.
[5] 陈静. 浅谈目前非洲猪瘟常用诊断方法[J].中国畜禽种业,2020,16(10):152-153.
CHEN J.A brief discussion on the common diagnostic methods of African swine fever[J].The Chinese Livestock and Poultry Breeding,2020,16(10):152-153.
[6] GIMENEZ-LIROLA L G,MUR L,RIVERA B,et al.Detection of African swine fever virus antibodies in serum and oral fluid specimens using a recombinant protein 30 (p30) dual matrix indirect ELISA[J].PLoS One,2016,11(9):e0161230.
[7] BERGERON H C,GLAS P S,SCHUMANN K R.Diagnostic specificity of the African swine fever virus antibody detection enzyme-linked immunosorbent assay in feral and domestic pigs in the United States[J].Transboundary and Emerging Diseases,2017,64(6):1 665-1 668.
[8] 张元峰, 刘锡玲,毕路,等.胶体金检测试纸卡在检测非洲猪瘟病毒抗体上的应用[J].养殖与饲料,2020,19(11):15-18.
ZHANG Y F,LIU X L,BI L,et al.Application of colloidal gold test paper card in detection of antibodies against African swine fever virus[J].Animals Breeding and Feed,2020,19(11):15-18.
[9] AGUERO M,FERNANDEZ J,ROMERO L,et al.Highly sensitive PCR assay for routine diagnosis of African swine fever virus in clinical samples[J].Journal of Clinical Microbiology,2003,41(9):4 431-4 434.
[10] FERNANDEZ-PINERO J,GALLARDO C,ELIZALDE M,et al.Molecular diagnosis of African swine fever by a new real-time PCR using universal probe library[J].Transboundary and Emerging Diseases,2013,60(1):48-58.
[11] HAINES F J,HOFMANN M A,KING D P,et al.Development and validation of a multiplex,real-time RT PCR assay for the simultaneous detection of classical and African swine fever viruses[J].PLoS One,2013,8(7):e71019.
[12] AGUERO M,FERNANDEZ J,ROMERO L J,et al.A highly sensitive and specific gel-based multiplex RT-PCR assay for the simultaneous and differential diagnosis of African swine fever and classical swine fever in clinical samples[J].Veterinary Research,2004,35(5):551-563.
[13] RONISH B,HAKHVERDYAN M,STAHL K,et al.Design and verification of a highly reliable Linear-After-The-Exponential PCR (LATE-PCR) assay for the detection of African swine fever virus[J].Journal of Virological Methods,2011,172(1-2):8-15.
[14] JAMES H E,EBERT K,MCGONIGLE R,et al.Detection of African swine fever virus by loop-mediated isothermal amplification[J].Journal of Virological Methods,2010,164(1-2):68-74.
[15] 王林, 高晓龙,吴迪,等.非洲猪瘟病毒实时荧光LAMP检测方法的建立与应用[J].中国兽药杂志,2020,54(8):1-8.
WANG L,GAO X L,WU D,et al.Establishment and application of real-time fluorescent LAMP detection method for African swine fever virus[J].Chinese Journal of Veterinary Drug,2020,54(8):1-8.
[16] WANG J C,WANG J F,GENG Y Y,et al.A recombinase polymerase amplification-based assay for rapid detection of African swine fever virus[J].Canadian Journal of Veterinary Research,2017,81(4):308-312.
[17] FRACZYK M,WOZNIAKOWSKI G,KOWALCZYK A,et al.Development of cross-priming amplification for direct detection of the African swine fever virus,in pig and wild boar blood and sera samples[J].Letters in Applied Microbiology,2016,62(5):386-391.
[18] SINGURU M M R,SUN S C,CHUANG M C.Advances in oligonucleotide-based detection coupled with fluorescence resonance energy transfer[J].Trac-Trends in Analytical Chemistry,2020,123:115 756.
[19] ZHANG X J,HU Y,YANG X T,et al.Förster resonance energy transfer (FRET)-based biosensors for biological applications[J].Biosensors & Bioelectronics,2019,138:111 314.
[20] LI C C,LI Y,ZHANG Y,et al.Single-molecule fluorescence resonance energy transfer and its biomedical applications[J].Trac-Trends in Analytical Chemistry,2020,122:115 753.
[21] JIN B R,WANG S R,LIN M,et al.Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection[J].Biosensors & Bioelectronics,2017,90:525-533.
[22] LU M L,MA X C,MOTHES W.Illuminating the virus life cycle with single-molecule FRET imaging[J].Advances in Virus Research,2019,105:239-273.
[23] ZHANG W,LIU X L,LI P,et al.Cellular fluorescence imaging based on resonance energy transfer[J].Trac-Trends in Analytical Chemistry,2020,123:115 742.
[24] HUANG H P,ZHU J J.DNA aptamer-based QDs electrochemiluminescence biosensor for the detection of thrombin[J].Biosensors & Bioelectronics,2009,25(4):927-930.
[25] FRENS G.controlled nucleation for regulation of particle-size in monodisperse gold suspensions[J].Nature Physical Science,1973,241(105):20-22.
[26] LIU J W,LU Y.Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes[J].Nature Protocols,2006,1(1):246-252.
[27] GUO J J,QIU X,MINGOES C,et al.Conformational details of quantum dot-DNA resolved by Förster Resonance Energy Transfer lifetime nanoruler[J].ACS Nano,2019,13(1):505-514.
[28] ZHANG D Y,WINFREE E.Control of DNA strand displacement kinetics using toehold exchange[J].Journal of the American Chemical Society,2009,131(47):17 303-17 314.
[29] WANG D,CHEN H,LI H,et al.Detection of Staphylococcus aureus carrying the gene for toxic shock syndrome toxin 1 by Quantum-Dot-Probe complexes[J].Journal of Fluorescence,2011,21(4):1 525-1 530.
[30] LIU B W,LIU J W.Freezing directed construction of Bio/Nano Interfaces:Rreagentless conjugation,denser spherical nucleic acids,and better nanoflares[J].Journal of the American Chemical Society,2017,139(28):9 471-9 474.
[1] 刘素素, 沙磊. 植物蛋白基肉制品的营养安全性分析[J]. 食品与发酵工业, 2021, 47(8): 297-303.
[2] 王力, 蔡思学, 洪诚毅, 刘光明, 倪辉, 周磊, 郑斌. 《食品安全追溯体系》课程的改革与成效[J]. 食品与发酵工业, 2021, 47(6): 306-311.
[3] 李阳, 刘旺鑫, 郑晓冬, 张辉, 冯凤琴. 基于食品安全通识教育的食品添加剂实验教学探索[J]. 食品与发酵工业, 2021, 47(4): 312-316.
[4] 韩薇薇, 张潇寒. 食品领域的生物安全问题研究现状与展望[J]. 食品与发酵工业, 2020, 46(22): 257-262.
[5] 陈浩 , 杨莹 , 赵良忠 , 岳子坚 , 尹乐斌 , 陈海凤. 湘派卤汁循环使用安全监测及预警模型的构建[J]. 食品与发酵工业, 2020, 46(21): 181-187.
[6] 欧阳秀酝, 李琳, 张林威, 程云辉, 许宙. 基于荧光共振能量转移的免疫传感器检测黄曲霉毒素B1[J]. 食品与发酵工业, 2020, 46(16): 226-230.
[7] 宁亚维, 赵丹丹, 郝建雄. 基于OBE理念的《食品安全卫生原理》在线教学[J]. 食品与发酵工业, 2020, 46(15): 313-317.
[8] 薛山, 江文辉, 李变花. 新工科浪潮下四段式混合教学金课建设探索与实践——以《食品安全与卫生学》为例[J]. 食品与发酵工业, 2020, 46(10): 303-308.
[9] 常晓曦, 王佳, 宋杨, 陶晓奇. 纳米金-罗丹明B协同作用在食品安全快速检测中的研究概述[J]. 食品与发酵工业, 2019, 45(6): 243-248.
[10] 崔乃元, 赵义良, 马立才, 李云. 水产品中氯霉素时间分辨荧光免疫层析定量检测方法[J]. 食品与发酵工业, 2019, 45(24): 241-245.
[11] 曾雪晴, 李洪军, 袁琳娜, 贺稚非. 郫县豆瓣酱中生物胺含量和种类分析[J]. 食品与发酵工业, 2019, 45(19): 258-265.
[12] 兰海鸥, 柯义强, 马咸莹, 程浩, 丁功涛, 李明生, 陈士恩, 马忠仁, 魏嘉. 重组酶聚合酶等温扩增技术在食品安全检测领域的应用[J]. 食品与发酵工业, 2019, 45(14): 233-238.
[13] 李晓红, 罗红霞, 句荣辉, 等. 真菌毒素暴露对组蛋白修饰影响的研究进展 [J]. 食品与发酵工业, 2018, 44(5): 270-276.
[14] 王雨, 焦珊瑶, 刘亚, 等. 食品组学研究进展 [J]. 食品与发酵工业, 2018, 44(5): 277-283.
[15] 谢体波, 龚维瑶, 钟新敏, 吴紫洁, 程茹, 张凯, 袁光宇. 动物源性食品检测磺胺类残留ELISA试剂盒的研制[J]. 食品与发酵工业, 2018, 44(12): 250-255.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《食品与发酵工业》编辑部
地址:北京朝阳区酒仙桥中路24号院6号楼111室
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn