Antioxidant and antibacterial activities of collagen peptide chelated zinc from tilapia scales
GUO Honghui, CHEN Hui, ZHAO Xue, FANG Hua, HONG Zhuan*
(Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography,Ministry of Natural Resources, Xiamen 361005, China)
Abstract: Collagen peptide and collagen peptide chelated zinc were prepared from tilapia scales and evaluated in terms of their in vitro antioxidant and antibacterial activities. The matrix assisted laser desorption ionization time-of-flight mass spectra confirmed the generation of collagen peptide chelated zinc. Amino acid analysis indicated that the collagen peptide was rich in hydroxyproline, glycine and aspartic acid. After chelation with zinc ions, the amino acid composition and proportion were significantly changed. Especially, the proportion of aspartic acid and glutamic acid in total amino acids increased from 19.72% and 8.79% to 22.73% and 9.71%, respectively. In vitro antioxidant results showed that the IC50 values of collagen peptide chelated zinc were 3.69 and 6.59 g/L for DPPH and ·OH free radical scavenging ability, respectively. Furthermore, collagen peptide chelated zinc displayed strong ferric iron reducing power. The antioxidant activity of collagen peptide chelated zinc was superior to that of collagen peptide. Although collagen peptide from tilapia scales showed no antibacterial activity, collagen peptide chelated zinc exhibited significant antibacterial activity against Bacillus subtilis, Escherichia coli, Staphylococcus aureus and Candida albicans. Therefore, collagen peptide chelated zinc from tilapia scales could be used as a potential antioxidant and antibacterial agent.
[1] RUAN J P, CHEN J D, ZENG J, et al.The protective effects of Nile tilapia (Oreochromis niloticus) scale collagen hydrolysate against oxidative stress induced by tributyltin in HepG2 cells[J].Environmental Science and Pollution Research, 2019, 26(4):3 612-3 620. [2] REN Y, WU H, CHI Y L, et al.Structural characterization, erythrocyte protection, and antifatigue effect of antioxidant collagen peptides from tilapia (Oreochromis nilotica L.) skin[J].Food & Function, 2020, 11:10 149-10 160. [3] 李灵, 徐梁棕, 汪少芸.罗非鱼鱼鳞胶原多肽的优化制备及其生物活性研究[J].福州大学学报(自然科学版), 2018, 46(1):120-127. LI L, XU L Z, WANG S Y.Optimization preparation of collagen peptides from scale of tilapia and study on their biological activity[J].Journal of Fuzhou University(Natural Science Edition), 2018, 46(1):120-127. [4] WANG Q L, XIONG Y L.Zinc-binding behavior of hemp protein hydrolysates:Soluble versus insoluble zinc-peptide complexes[J].Journal of Functional Foods, 2018, 49:105-112. [5] CHEN L, SHEN X R, XIA G H.Effect of molecular weight of tilapia (Oreochromis niloticus) skin collagen peptide fractions on zinc-chelating capacity and bioaccessibility of the zinc-peptide fractions complexes in vitro digestion[J].Applied Sciences, 2020, 10(6):2 041. [6] ZHANG Z R, ZHOU F B, LIU X L, et al.Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity[J].Food Chemistry, 2018, 258:269-277. [7] FANG Z, XU L Z, LIN Y L, et al.The preservative potential of Octopus scraps peptides-Zinc chelate against Staphylococcus aureus:Its fabrication, antibacterial activity and action mode[J].Food Control, 2019, 98:24-33. [8] 李晨, 陈复生, 布冠好.肽锌螯合物研究进展[J].食品工业, 2020, 41(2):217-220. LI C, CHEN F S, BU G H.Research progress of zinc-chelating peptide[J].The Food Industry, 2020, 41(2):217-220. [9] 郭洪辉, 洪专.响应面法优化罗非鱼鳞胶原肽螯合锌的制备工艺[J].食品工业, 2017, 38(12):82-86. GUO H H, HONG Z.Optimization of preparation process for collagen peptide chelated zinc from tilapia scales via response surface methodology[J].The Food Industry, 2017, 38(12):82-86. [10] 郭洪辉, 洪专.纳滤膜对罗非鱼鳞胶原肽螯合锌脱盐性能的研究[J].食品工业, 2017, 38(9):103-106. GUO H H, HONG Z.Study on the desalination of collagen peptide chelated zinc from tilapia scales with nanofiltration membranes[J].The Food Industry, 2017, 38(9):103-106. [11] DING D, YU T F, DU B W, et al.Collagen hydrolysate from Thunnus orientalis bone induces osteoblast proliferation and differentiation[J].Chemical Engineering Science, 2019, 205:143-150. [12] 宋卫得, 杜利君, 高尧华, 等.积分脉冲安培检测-离子色谱法同时测定果汁中20种氨基酸[J].中国食品添加剂, 2019,30(8):132-138. SONG W D, DU L J, GAO Y H, et al.Simultaneous determination of twenty amino acids in fruit juice by ion chromatography with integrated pulsed amperometric detection[J].China Food Additives, 2019,30(8):132-138. [13] 豆佳毓, 梁琪, 张炎.脱脂牦牛乳硬质干酪成熟期间水溶性多肽的抗氧化活性[J].食品与发酵工业, 2020, 46(10):80-86. DOU J Y, LIANG Q, ZHANG Y.Antioxidant activity of water-soluble polypeptide during the maturation of skim yak milk hard cheese[J].Food and Fermentation Industries, 2020, 46(10):80-86. [14] 秦修远, 陆路, 崔欣悦, 等.豌豆低聚肽硒螯合物的体外抗氧化作用[J].中国食品学报, 2020, 20(5):53-58. QIN X Y, LU L, CUI X Y, et al.Antioxidant effects in vitro of selenium-chelating pea oligopeptide[J].Journal of Chinese Institute of Food Science and Technology, 2020, 20(5):53-58. [15] AKINYEDE A I, FAGBEMI T N, OSUNDAHUNSI O F, et al.Amino acid composition and antioxidant properties of the enzymatic hydrolysate of calabash nutmeg (Monodora myristica) and its membrane ultrafiltration peptide fractions[J].Journal of Food Biochemistry, 2020, 45(3):e13437. [16] 姜良萍, 李博, 罗永康, 等.鲢鱼源多肽锌的制备工艺对其抑菌活性的影响[J].食品科技, 2013, 38(2):125-130. JIANG L P, LI B, LUO Y K, et al.Effects on the antibacterial activity of preparation technology for complexes of Zn2+ and peptides from silver carp (Hypophthalmichthys molitrix) proteins[J].Food Science and Technology, 2013, 38(2):125-130. [17] 姜丹丹, 侯虎, 杜芬, 等.鳕鱼皮源锌肽螯合物结构表征及基于Caco-2 细胞模型评价其促锌吸收特性[J].中国食品学报, 2018, 18(9):265-272. JIANG D D, HOU H, DU F, et al.Characterization of peptide-zinc complex from Alaska pollock skin and the evaluation of transport-uptake of zinc by Caco-2 monolayer cell model[J].Journal of Chinese Institute of Food Science and Technology, 2018, 18(9):265-272. [18] 刘晓容, 郭俊斌, 廖婉雯, 等.酶法制备乳源钙螯合肽及其特性表征[J].食品研究与开发, 2020, 41(8):60-67. LIU X R, GUO J B, LIAO W W, et al.Preparation and characterization of milk-derived calcium chelating peptide by enzymatic method[J].Food Research and Development, 2020, 41(8):60-67. [19] 汪婧瑜, 张业辉, 阮奇珺, 等, 超声波对乌鳢短肽-锌结构及抗氧化性的影响[J].食品科学技术学报, 2020, 38(1):104-110. WANG J Y, ZHANG Y H, RUAN Q J, et al.Effect of ultrasonic treatment on structure and antioxidant activity of Channa argus short peptide-zinc[J].Journal of Food Science and Technology, 2020, 38(1):104-110. [20] 林海燕, 王珊珊, 孙珊, 等.响应面法优化南极磷虾亚铁螯合肽制备工艺及其理化性质[J].食品工业科技, 2019, 40(21):166-173. LIN H Y, WANG S S, SUN S, et al.Optimization of preparation of iron-chelating peptides from Antarctic krill by response surface methodology and its physicochemical properties[J].Science and Technology of Food Industry, 2019, 40(21):166-173. [21] AI S G, TANABE S, NISHIMURA T.Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment [J].Journal of Agricultural and Food Chemistry, 2003, 51(12):3 661-3 667. [22] UDENIGWE C C, ALUKO R E.Chemometric analysis of the amino acid requirements of antioxidant food protein hydrolysates [J].International Journal of Molecular Sciences, 2011, 12(5):3 148-3 161. [23] HABINSHUTI I, MU T H, ZHANG M.Ultrasound microwave-assisted enzymatic production and characterisation of antioxidant peptides from sweet potato protein[J].Ultrasonics-Sonochemistry, 2020, 69:105262. [24] 毕秋芸. 裙带菜多肽的制备及其抗氧化活性的研究[J].中国调味品, 2019, 44(5):104-110. BI Q Y.Study on the preparation and antioxidant activity of polypeptides from Undaria pinnatifida[J].China Condiment, 2019, 44(5):104-110. [25] 龚毅, 胡晓波, 彭丽霞, 等.锌氨基酸螯合物的抑菌活性研究[J].食品科学, 2009, 30(17):84-87. GONG Y, HU X B, PENG L X, et al.Antibacterial activities of four zinc-amino acid chelates[J].Food Science, 2009, 30(17):84-87.