采用荧光染色分析ε-聚赖氨酸(ε-poly-L-lysine, ε-PL)产生菌Streptomyces sp. AF3-44在摇瓶发酵过程中胞内活性氧类(reactive oxygen species, ROS)水平与菌体活力,比较添加Vc对ε-PL产量、抗氧化酶类活性、总抗氧化能力、细胞膜脂成分及细胞氧化损伤的影响,并在5 L发酵罐上对比了添加Vc后分批发酵过程参数的变化。在摇瓶发酵过程中,随着pH值降低和ε-PL浓度的上升,Streptomyces sp. AF3-44胞内ROS累积,菌体活力下降;而Vc的添加提高了细胞的总抗氧化能力及膜脂中不饱和脂肪酸所占比例,减少了氧化损伤;在5 L发酵罐中添加Vc,分批发酵44 h,ε-PL产量为7.73 g/L,为不添加Vc发酵的1.5倍。通过外源添加抗氧化剂,增强菌体抗氧化能力,减少氧化损伤,为提升链霉菌ε-PL的发酵水平提供了一种新的策略。
[1] SHIMA S, SAKAI H. Poly-L-lysine produced by Streptomyces. Part II. Taxonomy and fermentation studies[J]. Agricultural and Biological Chemistry, 1981, 45(11): 2 497-2 502.
[2] HIRAKI J, ICHIKAWA T, NINOMIYA SI, et al. Use of ADME studies to confirm the safety of ε-polylysine as a preservative in food[J]. Regulatory Toxicology and Pharmacology, 2003, 37(2): 328-340.
[3] HAMANO Y, NICCHU I, SHIMIZU T, et al. ε-poly-l-lysine producer, Streptomyces albulus, has feedback-inhibition resistant aspartokinase[J]. Applied Microbiology and Biotechnology, 2007, 76(4): 873-882.
[4] LI Shu, LI Feng, CHEN Xu-sheng, et al. Genome shuffling enhanced ε-poly-l-Lysine production by improving glucose tolerance of Streptomyces graminearus[J]. Applied Biochemistry and Biotechnology, 2012, 166(2): 414-423.
[5] 李双, 颜鹏, 曾晨, 等. Genome shuffling筛选ε-聚赖氨酸高产菌及其对代谢流量分配的影响[J]. 微生物学通报, 2016(12): 2 568-2 577.
[6] 吴光耀, 陈旭升, 王靓, 等. 核糖体工程技术选育ε-聚赖氨酸高产菌株[J]. 微生物学通报, 2016(12): 2 744-2 751.
[7] KAHAR P, IWATA T, HIRAKI J, et al. Enhancement of epsilon-polylysine production by Streptomyces albulus strain 410 using pH control[J]. Journal of Bioscience and Bioengineering, 2001, 91(2): 190-194.
[8] REN Xi-dong, CHEN Xu-sheng, ZENG Xin, et al. Acidic pH shock induced overproduction of ε-poly-l-lysine in fed-batch fermentation by Streptomyces sp. M-Z18 from agro-industrial by-products[J]. Bioprocess and Biosystems Engineering, 2015, 38(6): 1 113-1 125.
[9] CHEN Xu-sheng, REN Xi-dong, ZENG Xin, et al. Enhancement of ε-poly-l-lysine production coupled with precursor l-lysine feeding in glucose-glycerol co-fermentation by Streptomyces sp. M-Z18[J]. Bioprocess and Biosystems Engineering, 2013, 36(12): 1 843-1 849.
[10] LIU Sheng-rong, WU Qing-ping, ZHANG Ju-mei, et al. Efficient production of ε-Poly-L-Lysine by Streptomyces ahygroscopicus using one-stage pH control fed-batch fermentation coupled with nutrient feeding[J]. Journal of Microbiology and Biotechnology, 2015, 25(3): 358-365.
[11] ITZHAKI R F. Colorimetric method for estimating polylysine and polyarginine[J]. Analytical Biochemistry, 1972, 50(2): 569-574.
[12] CHEN Xu-sheng, LI Shu, LIAO Li-juan, et al. Production of ε-poly-L-lysine using a novel two-stage pH control strategy by Streptomyces sp. M-Z18 from glycerol[J]. Bioprocess and Biosystems Engineering, 2011, 34(5): 561-567.
[13] 曾昕. 小白链霉菌同步代谢葡萄糖和甘油合成ε-聚赖氨酸的生理机制研究[D]. 无锡: 江南大学, 2016.
[14] 周永鹏. ε-聚赖氨酸产生菌的基因组重排与代谢调控分析[D]. 无锡: 江南大学, 2015.
[15] 颜鹏, 孙浩本, 毛忠贵, 等. 链霉菌ε-聚赖氨酸发酵过程中的氧化胁迫效应[J]. 微生物学通报, 2017(11): 2 547-2 556.
[16] 任喜东. 小白链霉菌响应酸性pH高产ε-聚赖氨酸的生理解析[D]. 无锡: 江南大学, 2015.
[17] 史竞艳, 罗辛茹, 鲍江鸿, 等. 超氧化物歧化酶活性的测定[J]. 湖北大学学报(自然科学版), 2012, 34(4): 373-377.
[18] 许雅娟, 赵艳景, 胡虹. 邻苯三酚自氧化法测定超氧化物歧化酶活性的研究[J]. 西南民族大学学报(自然科学版), 2006, 32(6): 1 207-1 209, 1 212.
[19] 燕国梁. 活性氧胁迫下Bacillus sp. F26以过氧化氢酶合成为特征的应激响应[D]. 无锡: 江南大学, 2006.
[20] HATZINGER P, PALMER P, SMITH R, et al. Applicability of tetrazolium salts for the measurement of respiratory activity and viability of groundwater bacteria[J]. Journal of Microbiological Methods, 2003, 52(PII S0167-7012(02)00132-X1): 47-58.
[21] BELENKY P, YE J, PORTER C, et al. Bactericidal Antibiotics induce toxic metabolic perturbations that lead to cellular damage[J]. Cell Reports, 2015, 13(5): 968-980.
[22] XIAO An-feng, ZHOU Xiang-shan, ZHOU Li, et al. Improvement of cell viability and hirudin production by ascorbic acid in Pichia pastoris fermentation[J]. Applied Microbiology and Biotechnology, 2006, 72(4): 837-844.
[23] POLJSAK B, GAZDAG Z, JENKO-BRINOVEC S, et al. Pro-oxidative vs antioxidative properties of ascorbic acid in chromium(VI)-induced damage: an in vivo and in vitro approach[J]. Journal of Applied Toxicology, 2005, 25(6): 535-548.
[24] LI Xl, CUI Xh, HAN Jr. Sclerotial biomass and carotenoid yield of Penicillium sp. PT95 under oxidative growth conditions and in the presence of antioxidant ascorbic acid[J]. Journal of Applied Microbiology, 2006, 101(3): 725-731.
[25] REN Lu-jing, Sun Xiao-man, LI Xiao-jun, et al. Enhancement of docosahexaenoic acid synthesis by manipulation of antioxidant capacity and prevention of oxidative damage in Schizochytrium sp.[J]. Bioresource Technology, 2017, 223(1): 141-148.
[26] 刘武康, 吴淑燕, 陈国薇, 等. 细菌产生的活性氧及其功能[J]. 微生物学杂志, 2016, 36(1): 89-95.
[27] 马丽娜, 米宏霏, 薛云新, 等. ROS在细菌耐药及抗生素杀菌中的作用机制[J]. 遗传, 2016(10): 902-909.
[28] 姚丹丹, 刘立明, 李江华, 等. 活性氧胁迫促进枯草芽孢杆菌WSHDZ-01过量合成过氧化氢酶[J]. 生物工程学报, 2009, 25(5): 789-792.
[29] BEITES T, PIRES S D, SANTOS C L, et al. Crosstalk between ROS homeostasis and secondary metabolism in S. natalensis ATCC 27448: modulation of pimaricin production by intracellular ROS[J]. Plos One, 2011, 6(11): e27472.
[30] 盛丽, 苏碧泉. 过氧化物酶体中活性氧的生成与清除机理[J]. 辽宁化工, 2003, 32(2): 84-86, 97.
[31] LIU Bin, LIU Jin, SUN Pei-pei, et al. Sesamol enhances cell growth and the biosynthesis and accumulation of docosahexaenoic acid in the microalga Crypthecodinium cohnii[J]. Journal of Agricultural & Food Chemistry, 2015, 63(23):5 640-5 645.
[32] ARUOMA O I. Antioxidant actions of plant foods: use of oxidative DNA damage as a tool for studying antioxidant efficacy[J]. Free Radic Res, 1999, 30(6): 419-427.
[33] 董难, 陈旭升, 任喜东, 等. 发酵过程流加L-谷氨酸提高ε-聚赖氨酸的产量[J].食品与发酵工业, 2013, 39(7):79-82.
[34] XIA Jun, XU Zhao-xian, XU Hong, et al. The regulatory effect of citric acid on the co-production of poly(epsilon-lysine) and poly(L-diaminopropionic acid) in Streptomyces albulus PD-1[J]. Bioprocess and Biosystems Engineering, 2014, 37(10): 2 095-2 103.
[35] GAFFNEY M, O'ROURKE R, MURPHY R. Manipulation of fatty acid and antioxidant profiles of the microalgae Schizochytrium sp. through flaxseed oil supplementation[J]. Algal Research, 2014, 6: 195-200.
[36] BURG A, OSHRAT L O. Salt effect on the antioxidant activity of red microalgal sulfated polysaccharides in soy-bean formula[J]. Marine Drugs, 2015, 13(10): 6 425-6 439.