关键酶基因的过表达与环境因素对大肠杆菌血红素合成的调控

  • 陈丹园 ,
  • 沈云杰 ,
  • 杨燕 ,
  • 唐蕾
展开
  • 1(江南大学,工业生物技术教育部重点实验室,江苏 无锡,214122)
    2(江南大学 生物工程学院,江苏 无锡,214122)
硕士研究生(唐蕾教授为通讯作者,E-mail:ltang@jiangnan.edu.cn)。

收稿日期: 2018-03-08

  网络出版日期: 2018-12-25

基金资助

111引智计划(111-2-06);江苏省现代工业发酵协同创新中心资助 (BY2013015-11);国家轻工技术与工程一流学科自主课题资助(LITE2018-27)

Regulation of heme synthesis in Escherichia coli by overexpression of genes for the key enzymes and environmental factors

  • CHEN Dan-yuan ,
  • SHEN Yun-jie ,
  • YANG Yan ,
  • TANG Lei
Expand
  • 1(Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China)
    2(School of Biotechnology, Jiangnan University, Wuxi 214122, China)

Received date: 2018-03-08

  Online published: 2018-12-25

摘要

为了阐明大肠杆菌卟啉合成途径关键酶基因和环境因素对卟啉代谢的调控作用,分别同源过表达了gltXhemAhemBhemDhemHhemAD基因,分析了环境因素对卟啉前体5-氨基乙酰丙酸(5-aminolevulinic, ALA)和终产物血红素合成的影响。结果表明,hemA过表达显著促进了卟啉和血红素合成,温度和溶氧条件对hemA重组菌Eco/pEA产ALA与血红素的影响不一致。在最佳环境条件下,Eco/pEA的血红素含量是原始菌株的11.7倍。因此,不同关键酶基因的过表达与环境因素对卟啉代谢的影响存在显著差异。

本文引用格式

陈丹园 , 沈云杰 , 杨燕 , 唐蕾 . 关键酶基因的过表达与环境因素对大肠杆菌血红素合成的调控[J]. 食品与发酵工业, 2018 , 44(11) : 7 -14 . DOI: 10.13995/j.cnki.11-1802/ts.017222

Abstract

In order to elucidate the effects of the genes encoding key enzymes in the porphyrin synthetic pathway as well as environmental factors on the regulation of porphyrin metabolism in E.coli, genes of gltX, hemA, hemB, hemD hemH and hemA-hemD were homogenously overexpressed respectively, and the effects of environmental factors on the precursor 5-aminolevulinic (ALA) and heme biosynthesis were analyzed. The results showed that the overexpression of hemA promoted the synthesis of heme obviously, and the effects of temperature and dissolved oxygen on the production of ALA and heme in Eco/pEA, a hemA overexpressed strain, were inconsistent. Under the optimal condition, the heme content in Eco/pEA was 11.7 fold of that in the parent strain. Therefore, the differences were significant among gene-overexpressing strains under different environmental conditions in porphyrin metabolism.

参考文献

[1] 宋艳群,祝融峰,陈鹏. 血红素的生理分布与调控[J]. 中国科学:化学, 2015(11): 1 194-1 205.
[2] GEISSER P, BURCKHARDT S. The pharmacokinetics and pharmacodynamics of iron preparations[J]. Pharmaceutics, 2011, 3(1): 12-33.
[3] TURKSEVEN S, KRUGER A, MINGONE C J, et al. Antioxidant mechanism of heme oxygenase-1 involves an increase in superoxide dismutase and catalase in experimental diabetes[J]. American Journal of Physiology-Heart and Circulatory Physiology. 2005, 289(2): H701-H707.
[4] KHAN A A, QUIGLEY J G. Control of intracellular heme levels: Heme transporters and heme oxygenases[J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2011, 1813(5): 668-682.
[5] RODGERS K R. Heme-based sensors in biological systems[J]. Current Opinion in Chemical Biology, 1999, 3(2): 158-167.
[6] CHAN M K. Recent advances in heme-protein sensors[J]. Current Opinion in Chemical Biology, 2001, 5(2): 216-222.
[7] MACMUNN C A. Researches on myohaematin and the histohaematins[J]. Philosophical Transactions of the Royal Society of London, 1885, 39: 248-252.
[8] REEDY C J, GIBNEY B R. Heme protein assemblies[J]. Chemical Reviews, 2004, 104(2): 617-650.
[9] YIN Lei, WU Nan, CURTIN J C, et al. Reverb alpha, a heme sensor that coordinates metabolic and circadian pathways[J]. Science, 2007, 318(5 857): 1 786-1 789.
[10] HOU Shang-wei, XU Rong, HEINEMANN S H, et al. The RCK1 high-affinity Ca2+ sensor confers carbon monoxide sensitivity to Slo1 BK channels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(10): 4 039-4 043.
[11] KANG Zhen, WANG Yang, GU Peng-fei, et al. Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose[J]. Metabolic Engineering, 2011, 13(5): 492-498.
[12] LEE M J, KIM H J, LEE J Y, et al. Effect of gene amplifications in porphyrin pathway on heme biosynthesis in a recombinant Escherichia coli[J]. Journal of Microbiology and Biotechnology, 2013, 23(5): 668-673.
[13] YU Xiao-li, JIN Hai-ying, CHENG Xue-lian, et al. Transcriptomic analysis for elucidating the physiological effects of 5-aminolevulinic acid accumulation on Corynebacterium glutamicum[J]. Microbiological Research, 2016, 192: 292-299.
[14] ZHANG Jun-li, KANG Zhen, DING Wen-wen, et al. Integrated optimization of the in vivo heme biosynthesis pathway and the in vitro iron concentration for 5-aminolevulinate production[J]. Applied Biochemistry and Biotechnology, 2016, 178(6): 1 252-1 262.
[15] SASSA S. Sequential induction of heme pathway enzymes during erythroid differentiation of mouse friend leukemia virus-infected cells[J]. The Journal of Experimental Medicine, 1976, 143(2): 305-315.
[16] LIU Li-fang, MARTINEZ J L, LIU Zi-he, et al. Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2014, 21(10): 9-16.
[17] 李智祥,赵磊,梁云龙,等. 生物法合成5-氨基乙酰丙酸的研究进展[J]. 发酵科技通讯, 2017(3): 178-182.
[18] 康振,张俊丽,杨森,等. 微生物发酵生产5-氨基乙酰丙酸研究进展[J]. 生物工程学报, 2013, 29(9): 1 214-1 222.
[19] LIU Shu-li, ZHANG Guang-ming, LI Xiang-kun, et al. Microbial production and applications of 5-aminolevulinic acid[J]. Applied Microbiology and Biotechnology, 2014, 98(6): 7 349-7 357.
[20] O’BRIAN M R. Encyclopedia of microbiology[M]. Amsterdam, Elsevier,,2009:194-209.
[21] ZHANG Jun-li, KANG Zhen, CHEN Jian, et al. Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli[J]. Scientific Reports, 2015, 5(17):8 584-8 591.
[22] 马蓉,徐昊,丁锐,等. 大肠杆菌多基因共表达策略[J].中国生物工程杂志,2012,32(4): 117-122.
[23] HEINEMANN I U, JAHN M, JAHN D. The biochemistry of heme biosynthesis[J]. Archives of Biochemistry and Biophysics, 2008, 474(2): 238-251.
[24] CONESA A, VAN-DEN-HONDEL C A, PUNT P J. Studies on the production of fungal peroxidases in Aspergillus niger[J]. Applied and Environmental Microbiology, 2000, 66(7): 3 016-3 023.
[25] SEGURA M D L M, LEVIN G, MIRANDA M V, et al. High-level expression and purification of recombinant horseradish peroxidase isozyme C in SF-9 insect cell culture[J]. Process Biochemistry, 2005, 40(2): 795-800.
[26] MORAWSKI B, LIN Z, CIRINO P C, et al. Functional expression of horseradish peroxidase in Saccharomyces cerevisiae and Pichia pastoris[J]. Protein Engineering, 2000, 13(5): 377-384.
[27] 黄加保. 芥蓝抗坏血酸过氧化物酶在大肠杆菌中的基因表达及酶学性质研究[D]. 无锡:江南大学, 2013.
[28] 李芳芳. 大肠杆菌血红素合成途径的改造与调控对5-氨基乙酰丙酸积累和菌体代谢的影响[D]. 济南:山东大学, 2014.
文章导航

/