对8株分离自广州市售海产品中的副溶血弧菌菌株进行鉴定,并分析了其耐药性。于2017年4~5月采集市售海产品,按照国标法对其中的副溶血弧菌进行分离鉴定,并进行16S rDNA同源性比较。采用K-B纸片法和结晶紫染色法分别评估了副溶血弧菌菌株对20种常见抗生素的药物敏感性及其生物膜形成能力。结果表明,8株分离菌株对多粘菌素B、头孢他啶、庆大霉素、强力霉素、氯霉素、红霉素、环丙沙星、萘啶酸这8种抗生素均为敏感,对青霉素、万古霉素2种抗生素均显示耐药,对其他10种抗生素有不同程度的耐药性。相比ATCC 17802菌株,分离菌株多重耐药性更为显著,耐抗生素数量为3~10种。分析菌株的生物膜形成能力,发现其耐药性与生物膜形成能力呈正相关。海产品中副溶血弧菌耐药性普遍且多重耐药性显著的现象,应该予以广泛关注和重视。
In this study, eight strains of Vibrio parahaemolyticus isolated from seafoods in Guangzhou were identified and their antibiotic resistances were analyzed. Seafoods were collected from markets in Guangzhou in April to May 2017. According to the detection method of Vibrio parahaemolyticus -GB 4789.7—2013, the physiological and biochemical characteristics of the strains were analyzed, and the strains were also identified by 16S rDNA sequence analysis. The sensitivities of the isolated strains and ATCC 17802 standard strain to 20 antibiotics were evaluated using Kirby-Bauer method. And the biofilm formation of the strain was assessed using crystal violet assay. All isolated strains were found to be susceptible to polymyxin B, ceftazidime, gentamicin, doxycycline, chloramphenicol, erythromycin, ciprofloxacin, and nalidixic acid. Furthermore, they were resistant to penicillin and vancomycin, and showed different degrees of resistance to other antibiotics. Moreover, all strains exhibited more significant multi-drug resistance with range 3 to 10 species antibiotics compared with ATCC 17802. Biofilm formation ability was positively correlated with drug resistance of the strain. The drug resistance of V. parahaemolyticus in seafoods and the significant multi-drug resistance deserve our due attention.
[1] WANG Wen, LI Min, LI Yan-bin. Intervention strategies for reducing Vibrio parahaemolyticus in seafood: A review[J]. Journal of Food Science, 2015,80(1):R10-R19.
[2] BROBERG C A, CALDER T J,ORTH K. Vibrio parahaemolyticus cell biology and pathogenicity determinants[J]. Microbes and Infection, 2011,13(12-13):992-1 001.
[3] YEUNG P S M, BOOR K J. Epidemiology, pathogenesis, and prevention of foodborne Vibrio parahaemolyticus infections[J]. Foodborne Pathogens and Disease, 2004,1(2):74-88.
[4] HAN N, MIZAN M F R, JAHID I K, et al. Biofilm formation by Vibrio parahaemolyticus on food and food contact surfaces increases with rise in temperature[J]. Food Control, 2016,70:161-166.
[5] NEWTON A E, GARRETT N, STROIKA S G, et al. Increase in Vibrio parahaemolyticus infections associated with consumption of atlantic coast shellfish-2013[J]. MMWR-Morbidity and Mortality Weekly Report, 2014,63(15):335-336.
[6] 严纪文, 马聪, 朱海明, 等. 2003~2005年广东省水产品中副溶血性弧菌的主动监测及其基因指纹图谱库的建立[J]. 中国卫生检验杂志, 2006,16(4):387-391.
[7] 刘弘, 陆屹, 高围溦, 等. 2008年上海市食源性疾病监测[J]. 中国食品卫生杂志, 2011,23(2):126-131.
[8] 秦磊, 王建红, 高静, 等. 河北省唐山市2016年海产品中副溶血性弧菌监测结果分析[J]. 医学动物防制, 2018(3):205-209.
[9] XU De-feng, WANG Ya-ling, SUN Li-jun, et al. Inhibitory activity of a novel antibacterial peptide AMPNT-6 from Bacillus subtilis against Vibrio parahaemolyticus in shrimp[J]. Food Control, 2013,30(1):58-61.
[10] MOELLERING R C. NDM-1-A cause for worldwide concern[J]. New England Journal of Medicine, 2010,363(25):2 377-2 379.
[11] KUMARASAMY K K, TOLEMAN M A, WALSH T R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study[J]. Lancet Infectious Diseases, 2010,10(9):597-602.
[12] 朱永官, 欧阳纬莹, 吴楠, 等. 抗生素耐药性的来源与控制对策[J]. 中国科学院院刊, 2015,30(4):509-516.
[13] PANTANELLA F, VALENTI P, NATALIZI T, et al. Analytical techniques to study microbial biofilm on abiotic surfaces: pros and cons of the main techniques currently in use[J]. Ann Ig, 2013,25(1):31-42.
[14] HALLSTOODLEY L, COSTERTON J W, STOODLEY P. Bacterial biofilms: from the natural environment to infectious diseases[J]. Nature Reviews Microbiology, 2004,2(2):95-108.
[15] EHRLICH G D, AHMED A, EARL J, et al. The distributed genome hypothesis as a rubric for understanding evolution in situ during chronic bacterial biofilm infectious processes[J]. Fems Immunology and Medical Microbiology, 2010,59(3):269-279.
[16] Clinical and Laboratory Standards Institute(CLSI). CLSI document M45-ACISBN 1-56238-607-7 methods for antimicrobial dilution disk dusceptibility desting of infrequently isolated for fastidious bacteria;Approved Guideline[S]. Wayne, Pennsylvania: Clinical and Laboratory Standards Institute, 2012.
[17] 魏宇清, 谢婷, 刘欢, 等. 香辛料提取物对副溶血弧菌生物膜的抑制作用[J]. 食品工业科技, 2017,38(4):101-105.
[18] 冼钰茵, 余翀, 阮荣勇, 等. 广州市售水产品副溶血弧菌和溶藻弧菌的耐药性评估[J]. 安徽农业科学, 2017,45(28):74-77.
[19] 卢奕, 陈玮祎, 刘海泉, 等. 上海市售水产品中副溶血性弧菌耐药性分析[J]. 食品工业科技, 2016,37(19):271-275.
[20] ANONYMOUS. 20th meeting of the european-tissue-repair-society, gent, BELGIUM, september 15-17, 2010 [J]. Wound Repair and Regeneration, 2010,18(6):A77-A559.
[21] DAVEY M E, O′TOOLE G A. Microbial biofilms: from ecology to molecular genetics[J]. Microbiology and Molecular Biology Reviews, 2000,64(4):847-867.
[22] MAH T T. Biofilm-specific antibiotic resistance[J]. Future Microbiology, 2012,7(9):1 061-1 072.
[23] HØIBY N, BJAMSHOLT T, GIVSKOV M, et al. Antibiotic resistance of bacterial biofilms[J]. International Journal of Antimicrobial Agents, 2010,35(4):322-332.
[24] JOLIVET-GOUGEON A, BONNAURE-MALLET M. Biofilms as a mechanism of bacterial resistance[J]. Drug Discovery Today Technologies, 2014,11:49-56.
[25] YOON S S, HENNIGAN R F, HILLIARD G M, et al. Pseudomonas aeruginosa anaerobic respiration in biofilms: Relationships to cystic fibrosis pathogenesis[J]. Developmental Cell, 2002,3(4):593-603.
[26] LECHEVALLIER M W, CAWTHON C D, LEE R G. Inactivation of biofilm bacteria[J]. Appl Environ Microbiol, 1988,54(10):2 492-2 499.
[27] 陈传荣, 韩敏敏, 张乃嘉, 等. 腹泻仔猪源致病性大肠杆菌生物膜与耐药性及毒力的相关性[J]. 微生物学通报, 2016,43(10):2 234-2 241.
[28] WU Jun, XIE Lian-yan, ZHANG Fang-fang, et al. Molecular characterization of ISCR1-Mediated blaPER-1 in a Non-O1, Non-O139 vibrio cholerae strain from China[J]. Antimicrobial Agents and Chemotherapy, 2015,59(7):4 293-4 295.
[29] LI Rui-chao, LIN Da-chuan, CHEN Kai-chao, et al. First detection of AmpC beta-Lactamase blaCMY-2 on a conjugative IncA/C Plasmid in a Vibrio parahaemolyticus isolate of food origin[J]. Antimicrobial Agents and Chemotherapy, 2015,59(7):4 106-4 111.
[30] 叶楝巍. 畜禽肉和活虾中弧菌鉴定及第三代头孢耐药机制初探[D]. 南京:南京农业大学, 2016.
[31] 叶灵琼. 副溶血弧菌耐药谱及其对头孢类药物抗性分析[D]. 上海:上海交通大学, 2011.
[32] MAKINO K, OSHIMA K, KUROKAWA K, et al. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae[J]. Lancet, 2003,361(9 359):743-749.