碱溶过程是影响热凝胶提取工艺效率和产品质量的关键因素。为探寻适合工业化提取热凝胶的工艺条件,研究了碱处理时间、碱溶温度和碱浓度对热凝胶溶胶流变学和提取后凝胶产品质构的影响。结果表明,(1)随着碱处理时间的延长,溶胶黏度降低,稠度系数下降,流变指数增加,溶胶接近于牛顿型流体,凝胶强度基本不变;(2)热凝胶凝胶强度和溶胶黏度均随碱溶温度升高而下降,较高的温度处理会降低热凝胶的品质,室温或水冷环境下可以满足工业要求;(3)随着碱浓度的增加,流体流变行为从宾汉塑性流体向牛顿流体接近。碱浓度低于0.3 mol/L时碱浓度明显影响溶胶流体性质,碱浓度高于0.5 mol/L时碱浓度明显影响热凝胶品质。
Alkaline dissolution is a key factor affecting the curdlan separation efficiency and product quality. In order to explore the optimal conditions for commercial production of curdlan, the effects of alkaline dissolution time, alkaline dissolution temperature and concentration of alkali solution on the rheological properties of curdlan colloidal sol and gel texture were studied. The results showed that, (1) With the prolongation of alkaline treatment time, the viscosity of the colloidal sol decreased, consistency coefficient decreased, rheological index increased. The colloidal sol is closed to Newtonian fluid, and gel strength remains unchanged. (2) Both gel strength and colloidal sol viscosity of curdlan decreased as the increase of alkaline dissolution temperature, and higher temperature treatments reduced the quality of curdlan. Room temperature or water-cool condition can meet industrial requirements. (3) As alkaline concentration increased, fluid rheological behavior of curdlan changed from Binham plastic fluid to Newtonian fluid. When alkaline concentration was lower than 0.3 mol/L, it significantly influenced colloidal sol properties. When higher than 0.5 mol/L, alkaline concentration significantly affected quality of curdlan.
[1] ZHANG Hong-tao, ZHU Li, LIU Deng-feng, et al. Model-based estimation of optimal dissolved oxygen profile in <i>Agrobacterium</i> sp. fed-batch fermentation for improvement of curdlan production under nitrogen-limited condition [J]. Biochemical Engineering Journal, 2015, 103:12-21.<br />
[2] BACIC A, FINCHER G B, STONE B A. Chemistry, Biochemistry, and Biology of 1-3 Beta Glucans and Related Polysaccharides[M]. San Diego: Academic Press, 2009: 5-46.<br />
[3] OKOBIRA T, MIYOSHI K, UEZU K, et al. Molecular dynamics studies of side chain effect on the beta-1,3-D-glucan triple helix in aqueous solution [J]. Biomacromolecules, 2008, 9(3): 783-788.<br />
[4] JEZEQUEL V. Curdlan: A new functional beta-glucan [J]. Cereal Foods World, 1998, 43(5): 361-364.<br />
[5] ZHAN Xiao-bei, LIN Chi-chung, ZHANG Hong-tao. Recent advances in curdlan biosynthesis, biotechnological production, and applications [J]. Applied Microbiology and Biotechnology, 2012, 93(2): 525-531.<br />
[6] BULL A T, ELLWOOD D C, RATLEDGE C. Microbial Technology: Current States and Future Prospects[M]. London: Cambridge University Press, 1979: 422-427.<br />
[7] WEST T P, NEMMERS B. Curdlan production by <i>Agrobacterium</i> sp. ATCC 31749 on an ethanol fermentation coproduct [J]. Journal of Basic Microbiology, 2008, 48(1): 65-68.<br />
[8] BEN SALAH R, JAOUADI B, BOUAZIZ A, et al. Fermentation of date palm juice by curdlan gum production from Rhizobium radiobacter ATCC 6466: Purification, rheological and physico-chemical characterization [J]. LWT-Food Science and Technology, 2011, 44(4): 1 026-1 034.<br />
[9] ŠANTEK B I, FELSKI M, FRIEHS K, et al. Production of paramylon, a β-1,3-glucan, by heterotrophic cultivation of Euglena gracilis on a synthetic medium [J]. Engineering in Life Sciences, 2009, 9(1): 23-28.<br />
[10] SHIVAKUMAR S, VIJAYENDRA S V. Production of exopolysaccharides by <i>Agrobacterium</i> sp. CFR-24 using coconut water - a byproduct of food industry [J]. Lett Appl Microbiol, 2006, 42(5): 477-482.<br />
[11] 孙永生. 微生物胞外多糖-热凝胶发酵和提取工艺的研究[D]. 无锡:江南大学, 2005.<br />
[12] 吴剑荣,詹晓北,刘惠,等. 氨水流加用于粪产碱杆菌热凝胶发酵[J]. 生物工程学报, 2008, (6): 1 035-1 039.<br />
[13] 张洪涛. 微生物β-1,3-葡聚糖的强化合成及最小功能单元挖掘[D]. 无锡:江南大学, 2011.<br />
[14] 刘佳. 产热凝胶粪产碱杆菌的生理代谢研究[D].无锡: 江南大学, 2010.<br />
[15] 路敬. 产热凝胶土壤杆菌及其ntrC突变株的生理代谢研究[D].无锡: 江南大学, 2012.<br />
[16] 于丽珺. 土壤杆菌31749合成热凝胶的氮调控机理及高产策略研究[D].无锡: 江南大学, 2011.<br />
[17] LI Jing, ZHU Li, ZHENG Zhi-yong, et al. A new effective process for production of curdlan oligosaccharides based on alkali-neutralization treatment and acid hydrolysis of curdlan particles in water suspension [J]. Applied Microbiology and Biotechnology, 2013, 97(19): 8 495-8 503.<br />
[18] TADA T,TAMAI N, MATSUMOTO T, et al. Network structure of curdlan in DMSO and mixture of DMSO and water [J]. Biopolymers, 2015, 58(2): 129-137.<br />
[19] TADA T, MATSUMOTO T, MASUDA T. Influence of alkaline concentration on molecular association structure and viscoelastic properties of curdlan aqueous systems [J]. Biopolymers, 1997, 42(4): 479-487.<br />
[20] 王永远,叶剑,郑志永, 等. 土壤杆菌氧调控基因fnrN突变株发酵性能及基于RNA-Seq的基因表达[J]. 微生物学通报, 2017,44(10): 2 261-2 268.<br />
[21] GB 28304—2012, 食品安全国家标准食品添加剂可得然胶[S]. 中华人民共和国卫生部, 2012.<br />
[22] 李里特. 食品物性学[M]. 北京:中国农业出版社, 2010.<br />
[23] RAHMAN M S, AL-FARSI S A. Instrumental texture profile analysis (TPA) of date flesh as a function of moisture content [J]. Journal of Food Engineering, 2005, 66(4): 505-511.<br />
[24] 史铁钧,吴德峰. 高分子流变学基础[M]. 北京:化学工业出版社, 2009.<br />
[25] BUSH C, RALAPATI S. Solution Properties of Polysaccharides[M]. Washington, D.C.: American Chemical Society, 1981: 125-147.