采用间隔偏最小二乘法(interval partial least squares,iPLS)、组合间隔偏最小二乘法(synergy interval partial least squares,SiPLS)、遗传偏最小二乘法(genetic algorithms partial least squares,GA-PLS)、竞争性自适应重加权法(competitive adaptive reweighted sampling,CARS)优选波长,并结合偏最小二乘法(partial least squares,PLS)建立白酒原酒中乙酸乙酯和乳酸乙酯定量分析模型。结果表明,上述4种方法都对模型有一定的优化效果,其中遗传算法结合组合间隔偏最小二乘算法(genetic algorithms-synergy interval partial least squares,GA-SiPLS)优选波长的优化效果最为明显,乙酸乙酯和乳酸乙酯的决定系数(R2)分别达到了0.989 7和0.991 0,预测均方根误差(root mean square error of prediction,RMSEP)分别为0.085 4、0.143 4,相对分析误差(relation percent deviation,RPD)分别为8.5和8.6,提高了模型的稳定性和精准性。说明近红外光谱分析技术对于白酒原酒中乙酸乙酯和乳酸乙酯含量的检测具有科学的指导意义。
买书魁
,
吴镇君
,
陈红光
,
张福艳
,
李子文
,
李宗朋
,
王琼雅
,
尹建军
,
王健
. 基于近红外光谱技术的白酒原酒中关键成分的定量分析[J]. 食品与发酵工业, 2018
, 44(11)
: 280
-285
.
DOI: 10.13995/j.cnki.11-1802/ts.016039
In this paper, the contents of ethyl acetate and ethyl lactate in base liquor were quantitatively analyzed by near infrared spectroscopy. The characteristic wave bands were selected using interval partial least squares (iPLS), synergy interval partial least squares (SiPLS), genetic algorithm partial least squares (GA-PLS), competitive adaptive reweighted sampling (CARS), and partial least squares (PLS) to establish a model for quantitative analysis of ethyl acetate and ethyl lactate. The results showed that the above four methods had certain optimization effect on the model. The optimization effect of genetic algorithm partial least squares (GA-PLS) and synergy interval partial least squares (SiPLS) were the most obvious. The R2 of ethyl acetate and ethyl lactate reached 0.989 7 and 0.991 0, and the Root Mean Squared Error of Prediction (RMSEP) respectively were 0.085 4 and 0.143 4, and the Ratio of performance to standard deviate (RPD) respectively were 8.5 and 8.6, which indicated that the stability and accuracy of the model were improved. The results showed that the near-infrared spectroscopy has a scientific significance for the detection of ethyl acetate and ethyl lactate in the base liquor.
[1] 谭超,吴同,李惟一,等. 近红外光谱组合区间偏最小二乘法定量白酒中的乙酸乙酯[J]. 计算机与应用化学,2014,31(4):510-512.
[2] 陈妍,胡慧,汪凤祖,等. 近红外光谱法快速分析白酒中的关键指标[J]. 酿酒科技,2010(11):90-92+94.
[3] 吴同,谭超. 近红外光谱同时测定白酒中总酯和杂醇油[J]. 化学研究与应用,2016,28(10):1 460-1 463.
[4] 彭帮柱,龙明华,岳田利,等. 傅立叶变换近红外光谱法检测白酒总酸和总酯[J]. 农业工程学报,2006(12):216-219.
[5] 展晓日,朱向荣,史新元,等. SPXY样本划分法及蒙特卡罗交叉验证结合近红外光谱用于橘叶中橙皮苷的含量测定[J]. 光谱学与光谱分析,2009,29(4):964-968.
[6] 李宗朋,王健,张晓磊,等. 基于近红外光谱技术的沙棘籽油鉴伪方法研究[J]. 中国油脂,2014,39(2):57-62.
[7] NRGAARD L, SAUDLAND A, WAGNER J, et al. Interval partial least squares regression (iPLS): a comparative chemometric study with an ex-ample from near-infrared spectroscopy[J]. Appl Spectrosc, 2000,54(3):413-419.
[8] LI Y, GUO M, SHI X, et al. Online near-infrared analysis coupled with MWPLS and SiPLS models for the multi-ingredient and multi-phase extraction of licorice (Gancao)[J]. Chinese Medicine,2015,10(1):1-10.
[9] 李子文,熊雅婷,张海红,等. 近红外光谱技术结合遗传算法用于苹果醋总酸定量分析[J]. 食品与发酵工业,2016,42(1):195-199.
[10] 刘燕德,施宇,蔡丽君,等. 基于CARS算法的脐橙可溶性固形物近红外在线检测[J]. 农业机械学报,2013(9):138-144.
[11] 熊雅婷,李宗朋,王健,等. 近红外光谱波段优化在白酒酒醅成分分析中的应用[J]. 光谱学与光谱分析,2016,36(1):84-90.
[12] 杨静文. 面向分子振动光谱建模的特征波长选择新方法与应用基础研究[D]. 杭州:浙江大学,2016.
[13] 陈兰珍. 蜂蜜品质近红外光谱评价技术研究[D]. 北京:中国农业科学院,2010.