裂殖壶菌制备二十二碳六烯酸油脂的研究历程及发展前景

  • 胡学超 ,
  • 任路静 ,
  • 胡耀池 ,
  • 纪晓俊 ,
  • 黄和
展开
  • (南京工业大学药学院,南京工业大学生物与制药工程学院,南京,211816)
助理研究员(黄和教授为通讯作者,E-mail:huangh@njtech.edu.cn)。

收稿日期: 2018-09-10

  网络出版日期: 2018-12-25

基金资助

国家自然科学基金(21878151);江苏省自然科学基金(BK20160092);江苏省高等学校自然而学研究面上项目(18KJB530007)

Research progress and prospect of docosahexaenoic acid-rich oil production by Schizochytrium sp.

  • HU Xue-chao ,
  • REN Lu-jing ,
  • HU Yao-chi ,
  • JI Xiao-jun ,
  • HUANG He
Expand
  • (College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China)

Received date: 2018-09-10

  Online published: 2018-12-25

摘要

二十二碳六烯酸(decosahexaeonic acid, DHA)是一种重要的ω-3长链多不饱和脂肪酸,广泛应用在婴幼儿食品添加剂和医药行业。生物法制备DHA油脂是当前的研究热点,文对DHA的常用生产菌、产品的安全性认证以及生物制备过程进行综述,重点对裂殖壶菌产DHA的发酵水平提升、油脂精炼技术的革新展开评述,结合当前国内产业化现状对生物法产DHA的发展前景进行分析,为后续多种高附加值脂溶性化学品的开发提供了借鉴。

本文引用格式

胡学超 , 任路静 , 胡耀池 , 纪晓俊 , 黄和 . 裂殖壶菌制备二十二碳六烯酸油脂的研究历程及发展前景[J]. 食品与发酵工业, 2018 , 44(11) : 307 -312 . DOI: 10.13995/j.cnki.11-1802/ts.018738

Abstract

Docosahexaeonic acid (DHA) is an important kind of ω-3 polyunsaturated fatty acid, which has been widely used in infant food additive and pharmaceutical industry. Bio-production of DHA-rich oil is the hot topic in recent research. This paper reviewed the common producing strains, product safety assessment and bio-production of DHA, especially the enhancement of DHA production by Schizochytrium sp., and technology innovation of lipid refining. Furthermore, combined with current status of domestic industrialization of DHA, the prospect of DHA-rich oil was also analyzed in this paper, which would provide the reference for the development of other value-added lipid-soluble chemicals.

参考文献

[1] LLOYD A H, YOUNG K Y. Health benefits of docohexaenoic acid (DHA) [J]. Pharmacol Res, 1999, 40(3):211-225.
[2] WARD O, SINGH A. Omega-3/6 fatty acids: Alternative sources of production [J]. Process Biochemistry, 2005, 40: 3 627-3 652.
[3] LIU J, PEI G S, DIAO J J, et al. Screening and transcriptomic analysis of Crypthecodinium cohnii mutants with high growth and lipid content using the acetyl-CoA carboxylase inhibitor sethoxydim [J]. Applied Microbiology and Biotechnology, 2017, 101(15): 6 179-6 191.
[4] HARRINGTON G W, HOLZ J G. The monoenoic and docosahexaenoic fatty acids of a heterotrophic dinoflagellate [J]. Biochim Biophys Acta, 1968, 164: 137-139.
[5] KYLE D J, GLADUE M. Eicosapentaenoic acids and methods for their production, US5244921 [P],1991.
[6] SWAAF M E, SIJTSMA L, PRONK J T. High-cell-density fed-batch cultivation of the docosahexaenoic-acid producing marine alga Crypthecodinium cohnii [J]. Biotechnology and Bioengineering, 2003, 81:666-672.
[7] SWAAF M E, PRONK J T. SIJTSMA L. Fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii on ethanol [J]. Applied Microbiology Biotechnol, 2003, 61:40-43.
[8] ZHAO X, QIU X. Analysis of the biosynthetic process of fatty acids in Thraustochytrium [J]. Biochimie, 2018, 144: 108-114.
[9] HASKINS R H, THLLOCH A P, MIEETIEH RG. Steroids and the stimulation of sexual reproduction of a species of phythian [J].Canadian Journal of Microbiology, 2011, 10(2): 187-195.
[10] BARCLAY W R. Process for the heterotrophic production of microbial products with high concentrations of omega-3 highly unsaturated fatty acids[P]. US patent. 5130242, 1992.
[11] NAKAHARA T, HIGASHIHARA T, TANAKA S, et al. Production of docosahexaenoic and docosapexaenoic acids by Schizochytrium sp. isolated from Yap islands [J]. Journal of the American Oil Chemists’ Society, 1996, 73(11):1 421-1 426.
[12] REN L J, HUANG H, XIAO A, et al. Enhanced docosahexaenoic acid production by reinforcing acetyl-CoA and NADPH supply in Schizochytrium sp. HX-308 [J], Bioprocess and Biosystem Engineering, 2009, 32: 837-843.
[13] SONG X J, ZHANG X C, KUANG C H, et al. Optimization of fermentation parameters for the biomass and DHA production of Schizochytrium limacinum OUC88 using response surface methodology [J]. Process Biochemistry, 2007, 42(10): 1 391-1 397.
[14] GRAS notification for the use of DHA SCO and ARASCO (single cell source of DHA and ARA) as sources of the LCPUFAs in infant formulas[C]. Martek Biosciences Corporation. February 18, 2000.
[15] LIAN M, HUANG H, REN L J, et.al. Increase of docosahexaenoic acid production by Schizochytrium sp. through mutagenesis and enzyme assay [J]. Applied Biochemistry and Biotechnology, 2010, 162: 935-941.
[16] 许永,臧晓南, 徐涤, 张学成. 裂殖壶菌诱变筛选的研究[J]. 中国海洋大学学报(自然科学版),2012, 42(12):54-58.
[17] FU J, CHEN T, LU H, et. al. Enhancement of docosahexaenoic acid production by low-energy ion implantation coupled with screening method based on Sudan black B staining in Schizochytrium sp. [J]. Bioresource Technology, 2016, 221: 405-411.
[18] SUN X M, REN L J, JI X J, et. al. Adaptive evolution of Schizochytrium sp. by continuous high oxygen stimulations to enhance docosahexaenoic acid synthesis [J]. Bioresource Technology, 2016, 211: 374-381.
[19] SUN X M, REN L J, BI Z Q, et. al. Development of a cooperative two-factor adaptive-evolution method to enhance lipid production and prevent lipid peroxidation in Schizochytrium sp [J]. Biotechnology for Biofuels, 2018, 11(1): 65-80.
[20] QU L, REN L J, SUN G N, et al., Batch, fed-batch and repeated fed-batch fermentation processes of the marine thraustochytrid Schizochytrium sp. for producing docosahexaenoic acid [J]: Bioprocess and Biosystems Engineering, 2013, 36, 1 905-1 912.
[21] LING X P, GUO J, LIU X, et al. Impact of carbon and nitrogen feeding strategy on high production of biomass and docosahexaenoic acid (DHA) by Schizochytrium sp. LU310 [J].Bioresource Technology, 2015, 184: 139-147.
[22] ZENG Y, JI X J, LIAN M, et al.: Development of a temperature shift strategy for efficient docosahexaenoic acid production by a marine fungoid protist, Schizochytrium sp. HX-308 [J]. Applied Biochemistry and Biotechnology 2011, 164(3): 249-255.
[23] QU L, JI X J, REN L J, et al. Enhancement of docosahexaenoic acid production by Schizochytrium sp. using a two-stage oxygen supply control strategy based on oxygen transfer coefficient [J]. Letters in Applied Microbiology, 2011, 52:22-27.
[24] HU X C, REN L J, CHEN S L, et al. The roles of different salts and a novel osmotic pressure control strategy for improvement of DHA production by Schizochytrium sp. [J]. Bioprocess and Biosystem Engineering, 2015. 38(11):2 129-2 136.
[25] REN L J, HUANG H, XIAO A H, et al. Enhanced docosahexaenoic acid production by reinforcing acetyl-CoA and NADPH supply in Schizochytrium sp.HX-308[J]. Bioprocess and Biosystem Engineering, 2009, 32:837-843.
[26] REN L J, SUN X M, JI X J, et al. Enhancement of docosahexaenoic acid synthesis by manipulation of antioxidant capacity and prevention of oxidative damage in Schizochytrium sp. [J]. Bioresource Technology, 2017, 223:141-148.
[27] WANG K, SUN T, CUI J, et.al. Screening of chemical modulators for lipid accumulation in Schizochytrium sp. S31 [J]. Bioresource Technology, 2018, 260: 124-129.
[28] QU L, REN L J, HUANG H. Scale-up of docosahexaenoic acid production in fed-batch fermentation by Schizochytrium sp. based on volumetric oxygen-transfer coefficient [J]. Biochemical Engineering Journal, 2013, 77: 82-87.
[29] GUO D S, JI X J, REN L J, et al. Development of a real-time bioprocess monitoring method for docosahexaenoic acid production by Schizochytrium sp. [J]. Bioresource Technology, 2016, 216: 422-427.
[30] ZHAO X Y, REN L J, GUO D S, et al. CFD investigation of Schizochytrium sp. impeller configurations on cell growth and docosahexaenoic acid synthesis [J]. Bioprocess and Biosystem Engineering, 2016, 39(8):1 297-1 304.
[31] GUO D S, JI X J, REN L J, et al. Improving docosahexaenoic acid production by Schizochytrium sp. using a newly designed high-oxygen-supply bioreactor [J]. AICHE J, 2017, 63(10): 4 278-4 286.
[32] ZHANG L, ZHAO H, LAI Y, et.al., Improving docosahexaenoic acid productivity of Schizochytrium sp. by a two-stage AEMR/shake mixed culture mode[J]. Bioresource Technology, 2013, 142 (8) :719-722.
[33] METZ J, ROESSLER P, FACCIOTTI D, LEVERING C, et al. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes [J]. Science, 2001, 293: 290-293.
[34] MEESAPYODSUK D, QIU X. Biosynthetic mechanism of very long chain polyunsaturated fatty acids in Thraustochytrium sp. 26185 [J]. Journal of Lipid Research, 2016, 57(10):1 854-1 864.
[35] GEMPERLEIN K, RACHID S, GARCIA RO, et al. Polyunsaturated fatty acid biosynthesis in myxobacteria: different PUFA synthases and their product diversity [J]. Chemical Science, 2014, 5(5):1 733.
[36] RATLEDGE C. Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production [J]. Biochimie, 2004, 86(11):807-815.
[37] 黄和,朱婧瑶,胡学超,等. 一种提取二十二碳六烯酸油脂的方法[P]. ZL201010182222.1
[38] YOUNGCHUL L, YUNSUK H, FAROOQ W, et al. Lipid extractions from docosahexaenoic acid (DHA)-rich and oleaginous [39] Chlorella sp. biomasses by organic-nanoclays [J]. Bioresource Technology, 2013, 137(11): 74-81.
[39] KUO C, LIAO H, WANG Y, et al. Highly efficient extraction of EPA/DHA‐enriched oil from cobia liver using homogenization plus sonication [J]. European Journal of Lipid Science & Technology, 2017, 119(10): 1600466.
[40] PARK S, KIM K, HAN S, et al. Organic solvent-free lipid extraction from wet Aurantiochytrium sp. biomass for co-production of biodiesel and value-added products [J]. Applied Biological Chemistry, 2017, 60(2):101-108.
文章导航

/