以雨生红球藻(Haematococcus pluvialis) LUGU为对象,研究了高光照联合缺氮条件下,外源添加褪黑素(melatonin, MLT)对H. pluvialis生物量、虾青素积累量、油脂含量以及与虾青素、油脂合成相关酶基因表达量的影响。结果显示:缺氮胁迫、联合高光诱导条件下,外源添加10 μmol/L MLT,虾青素积累量显著提高,最大虾青素积累量可达32.37 mg/g,是对照组的2.25倍;藻细胞内油脂的含量达到42.84%,为对照组的1.21倍。虾青素合成关键酶基因bkt及油脂合成关键酶基因fad的表达量均出现不同程度的上调。此外,研究了外源MLT对细胞内活性氧(ROS)水平的影响以及相关抗氧化酶的活性变化规律。 ROS水平受到抑制,虾青素合成相关的抗氧化酶SOD、CAT和POD活性增强。研究表明,在高光照联合缺氮胁迫条件下,外源添加MLT有利于雨生红球藻积累虾青素,为强化虾青素的生物合成提供了理论依据。
The effects of melatonin (MLT) on biomass density, accumulation of astaxanthin, lipid synthesis, and expression level of the genes associated with astaxanthin accumulation and lipid synthesis in Haematococcus pluvialis LUGU was investigated under the conditions of high light and nitrogen deficiency cultivation process was stud. The results showed that under nitrogen deficiency combined with high light and induced exogenous addition of 10 μM MLT, astaxanthin accumulation was significantly increased up to 32.37 mg/g, 2.25 folds of the control, and the intracellular lipid reached 42.84%, 1.21 folds of the control. The expression of bkt, the key gene for the accumulation of astaxanthin, and fad, the key gene for the synthesis of lipid, were also up-regulated. In addition, the effects of MLT on intracellular reactive oxygen species (ROS) levels and the activity changes of antioxidant enzymes that related to the synthesis of astaxanthin were investigated. ROS synthesis was inhibited and the activities of SOD, CAT, and POD were enhanced. That exogenous addition of MLT facilitated Haematococcus pluvialis the accumulation of astaxanthin under conditions of high light and nitrogen deficiency stress provides a theoretical basis for enhancing the biosynthesis of astaxanthin.
[1] 魏东,严小君. 天然虾青素的超级抗氧化活性及其应用[J]. 中国海洋药物, 2001, 20(4):45-50.<br />
[2] 殷青青. 胰岛素抵抗大鼠脑组织损伤机制以及番茄红素的保护作用研究[D]. 济南:山东大学, 2015.<br />
[3] HIGUERA-CIAPARA I, FELIX-VALENZUELA L, GOYCOOLEA F M. Astaxanthin: a review of its chemistry and applications[J]. Critical Reviews in Food Science and Nutrition, 2006, 46(2): 185-196.<br />
[4] 张晓燕,刘楠,周德庆. 天然虾青素来源及分离的研究进展[J]. 食品与机械, 2012, 28(1):264-267.<br />
[5] POONKUM W, POWTONGSOOK S, PAVASANT P. Astaxanthin induction in microalga <i>H. pluvialis </i>with flat panel airlift photo bioreactors under indoor and outdoor conditions[J]. Preparative Biochemistry & Biotechnology, 2015, 45(1): 1-17.<br />
[6] NAGUIB Y M A. Antioxidant activities of astaxanthin and related carotenoids[J]. Journal of Agricultural and Food Chemistry, 2000, 48(4): 1 150-1 154.<br />
[7] WU Y H, YANG J, HU H Y, et al. Lipid-rich microalgal biomass production and nutrient removal by <i>Haematococcus pluvialis</i> in domestic secondary effluent[J]. Ecological Engineering, 2013, 60: 155-159.<br />
[8] HAGEN C, GRU NEWALD K, XYLA-NDER M, et al. Effect of cultivation parameters on growth and pigment biosynthesis in flagellated cells of <i>Haematococcus pluvialis</i>[J]. Journal of Applied Phycology, 2001, 13(1): 79-87.<br />
[9] SU Y, WANG J, SHI M, et al. Metabolomic and network analysis of astaxanthin-producing Haematococcus pluvialis under various stress conditions[J]. Bioresource Technology, 2014, 170: 522-529.<br />
[10] LEMOINE Y, SCHOEFS B. Secondary ketocarotenoid astaxanthin biosynthesis in algae: A multifunctional response to stress[J]. Photosynthesis Research, 2010, 106(1-2): 155-177.<br />
[11] GAO Z Q, MENG C X, CHEN Y C, et al. Comparison of astaxanthin accumulation and biosynthesis gene of three <i>Haematococcus pluvialis</i> strains upon salinity stress[J]. Journal of Applied Phycology, 2015, 27(5): 1853-1860.<br />
[12] HOLTIN K, KUEHNLE M, REHBEIN J, et al. Determination of astaxanthin and astaxanthin esters in the microalgae <i>Haematococcus pluvialis</i> by LC-(APCI) MS and characterization of predominant carotenoid isomers by NMR spectroscopy[J]. Analytical and Bioanalytical Chemistry, 2009, 395(6): 1 613-1 622.<br />
[13] LEMER A B, CASE J D, TAKAHASHI Y, et al. Isolation of melatonin, the pineal gland factor that lightens melanocyteS1[J]. Journal of the American Chemical Society, 1958, 80(10): 2 578-2 587.<br />
[14] WANG Y P, REITER R J, CHAN Z L-long. Phytomelatonin: A universal abiotic stress regulator[J]. Journal of Experimental Botany, 2017, 69(5): 963-974.<br />
[15] 姜超强,祖朝龙. 褪黑素与植物抗逆性研究进展[J]. 生物技术通报, 2015, 31(4): 47-55.<br />
[16] 徐向东,孙艳,郭晓芹,等. 褪黑素对高温胁迫下黄瓜幼苗抗坏血酸代谢系统的影响[J]. 应用生态学报, 2010, 21(10):2 580-2 586.<br />
[17] ZHAO Y T, SHANG M M, XU J W, et al. Enhanced astaxanthin production from a novel strain of <i>Haematococcus pluvialis</i> using fulvic acid[J]. Process Biochemistry, 2015, 50(12): 2 072-2 077.<br />
[18] CHE R Q, DING K, HUANG L, et al. Enhancing biomass and oil accumulation of <i>Monoraphidium</i> sp. FXY-10 by combined fulvic acid and two-step cultivation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67: 161-165.<br />
[19] HEATH R L, PACKER L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation[J]. Archives of Biochemistry and Biophysics, 1968, 125(1): 189-198.<br />
[20] 李大菲,赵永腾,余旭亚. 褪黑素对单针藻油脂积累的影响[J]. 水生生物学报, 2018, 42: 423-429.<br />
[21] YU X H, NIU X F, ZHANG X Q, et al. Identification and mechanism analysis of chemical modulators enhancing astaxanthin accumulation in <i>Haematococcus pluvialis</i>[J]. Algal Research, 2015, 11: 284-293.<br />
[22] MA R, THOMAS-HALL S R, CHUA E T, et al. Gene profiling of astaxanthin and fatty acid pathways in <i>Haematococcus pluvialis</i> in response to different LED lighting conditions[J]. Bioresource Technology, 2018, 250: 591-602.<br />
[23] GRU~NEWALD K, HIRSCHBERG J, HAGEN C. Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga<i> Haematococcus pluvialis</i>[J]. Journal of Biological Chemistry, 2001, 276(8): 6 023-6 029.<br />
[24] 刘月,寇从贤,付桂萍,等. 褪黑素对大豆幼苗盐害的缓解效应及机理研究[J]. 中国油料作物学报, 2017, 39(6):813-819.<br />
[25] ANDREEV I M. The vacuolar symplast: Does it really exist in plants? (comments on publications of G A Velikanov et al. in Russian Journal of Plant Physiology)[J]. Russian Journal of Plant Physiology, 2008, 55(6):843-845.<br />
[26] IP P F, CHEN F. Employment of reactive oxygen species to enhance astaxanthin formation in <i>Chlorella zofingiensis</i> in heterotrophic culture[J]. Process Biochemistry, 2005, 40(11): 3 491-3 496.<br />
[27] ZHENG Y H, LI Z, TAO M, et al. Effects of selenite on green microalga <i>Haematococcus pluvialis</i>: Bioaccumulation of selenium and enhancement of astaxanthin production[J]. Aquatic Toxicology, 2017, 183: 21-27.<br />
[28] LI Y T, SOMMERFELD M, CHEN F, et al. Consumption of oxygen by astaxanthin biosynthesis: aprotective mechanism against oxidative stress in <i>Haematococcus</i> pluvialis (Chlorophyceae)[J]. Journal of Plant Physiology, 2008, 165(17): 1 783-1 797.<br />
[29] ZHANG Z, SUN D Z, CHENG K W, et al. Inhibition of autophagy modulates astaxanthin and total fatty acid biosynthesis in <i>Chlorella zofingiensis</i> under nitrogen starvation[J]. Bioresource Technology, 2018, 247: 610-615.<br />
[30] 高政权,孟春晓,高宏正,等. 多种植物生长调节剂诱导雨生红球藻高效生产虾青素的研究[D]. 淄博:山东理工大学, 2015.<br />
[31] ZHAO Y T, LI D F, XU J W, et al. Melatonin enhances lipid production in <i>Monoraphidium</i> sp. QLY-1 under nitrogen deficiency conditions via a multi-level mechanism[J]. Bioresource Technology, 2018, 259: 46-53.