新产原酒等级的准确评判是白酒分级储存的重要依据,也是白酒质量控制中至关重要一环。针对目前新产原酒等级评定依靠品酒师感官品评结合化学检测繁琐费时的缺点,采用zNoseTM电子鼻对3个等级新产原酒挥发性物质进行检测分析,从等级判定和总酸、总酯含量预测2方面对新产原酒品质预测方法进行研究。在等级判定中,采用主成分分析与费舍尔判别分析。结果表明,费舍尔判别分析效果优于主成分分析,判别正确率为85.11%。在酸酯含量预测中,采用偏最小二乘法对变量进行提取,并建立偏最小二乘回归模型对总酸、总酯指标含量进行预测,预测集模型拟合决定系数R2分别为0.8361、0.8522。实验表明zNoseTM电子鼻在新产原酒等级鉴别与酸酯含量预测方面具有较好应用前景。
Accurate grade evaluation of young liquor is essential for subsequent liquor-graded storage and a crucial part of quality control. Currently, the grade evaluation of the products mainly depends on the taster's sensory evaluation and chemical analysis, which is time-consuming and of cumbersome . The detection and analysis of the volatiles in three grades of young liquors was carried out by using an electronic nose and the quality prediction methods were studied in terms of grade determination, total acids and total ester contents. 1) The principal component analysis and Fischer discriminant analysis were used to determine the grades, resulted in that Fisher's discriminant analysis was superior to the principal component analysis and the correct rate of discrimination reached 85.11%. 2) In the prediction of acid and ester contents, a partial least-squares regression model was established that predicted the total acid and total ester index contents, which fit determination coefficient R2 of 0.836 1 and 0.852 2. These results suggest that electronic nose is a useful and powerful tool in identification and prediction of acid ester contents in different grade liquors.
[1] 赖登, 林东.世界著名六大蒸馏酒工艺特点、香味特征的研究[J]. 酿酒, 2007, 34(3):106-110
[2] LI Z F, WANG N, VIGNEAULT C. Electronic nose and electronic tongue in food production and processing[J]. Stewart Postharvest Review, 2006, 4(7): 1-6.
[3] 孙宗保, 辛新, 邹小波,等.傅里叶变换红外光谱结合化学计量学方法对白酒基酒的快速定性和定量分析[J]. 光谱学与光谱分析, 2017, 37(9):2 756-2 762.
[4] 王书兰,王永,陈尚龙, 等. 直接进样-石墨炉原子吸收光谱法测定白酒中的镉[J]. 酿酒科技, 2013, 223(1) : 112-115.
[5] 江涛, 李博斌, 郑云峰,等.电子鼻对绍兴黄酒酒龄的判别研究[J]. 酿酒科技, 2012(1):30-32,37.
[6] 徐晚秀, 李臻峰, 张振,等.基于电子鼻的中国白酒酒龄检测[J]. 食品与发酵工业, 2016, 42(2):144-149.
[7] 邓霞, 李臻峰, 王辉,等.基于zNoseTM电子鼻对不同品牌汾酒的快速识别[J]. 食品与发酵工业, 2017,359 (11):207-211.
[8] LI Z F, WANG N, RAGHAVAN G S V, et al. Volatiles evaluation and dielectric properties measurements of Chinese spirits for quality assessment[J]. Food and Bioprocess Technology, 2011, 4(2): 247-253.
[9] 丁云连.汾酒特征香气物质的研究[D].无锡:江南大学,2008.
[10] 殷勇, 田先亮, 邱明.基于人工嗅觉的酒类质量稳定性判别方法研究[J]. 仪器仪表学报, 2005, 26(6):565-656.
[11] 殷勇. 基于PCA与Wilks准则的电子鼻酒类鉴别方法研究[J]. 仪器仪表学报, 2007, 28(5): 849-852.
[12] 浦宏杰, 汪迪松, 王辉,等.基于zNose (TM)电子鼻的芒果腐烂及成熟度检测[J]. 现代食品科技, 2017, 33(3):304-310.
[13] LAMMERTYN J, VERAVERBEKE E A, IRUDAYARAJ J. zNoseTM technology for the classification of honey based on rapid aroma profiling[J]. Sensors and Actuators B: Chemical, 2004, 98(1): 54-62.