[1] 郑喜珅,鲁安怀,高翔,等.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
[2] 郭轶琼,宋丽.重金属废水污染及其治理技术进展[J].广州化工,2010,38(4):18-20.
[3] 朱石嶙,冯茜丹,党志.大气颗粒物中重金属的污染特性及生物有效性研究进展[J].地球与环境,2008,36(1):26-32.
[4] 孙光闻.重金属污染及治理研究进展[J].南方农业,2007,1(2):41-43;52.
[5] 马前,张小龙.国内外重金属废水处理新技术的研究进展[J].环境工程学报,2007,1(7):10-14.
[6] FU F L, WANG Q. Removal of heavy metal ions from wastewaters: A review [J]. Journal of Environmental Management, 2011, 92(3):407-418.
[7] CARLOS A C A D, DUTA F P. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis [J]. Brazilian Journal of Microbiology, 2001, 32(1):1-5.
[8] YAN L U, YIN H H, ZHANG S, et al. Biosorption of inorganic and organic arsenic from aqueous solution by Acidithiobacillus ferrooxidans BY-3[J]. Journal of Hazardous Materials, 2010, 178(1-3):209-217.
[9] PATEL P, GOULHEN F, BOOTHMAN C, et al. Arsenate detoxification in a Pseudomonad hypertolerant to arsenic [J]. Archives of Microbiology, 2007, 187(3):171-183.
[10] PUZON G J, PETERSEN J N, ROBERTS A G, et al. A bacterial flavin reductase system reduces chromate to a soluble chromium(III)-NAD(+) complex[J]. Biochemical and Biophysical Research Communications, 2002, 294(1):76-81.
[11] IBRAHIM F, HALTTUNEN T, TAHVONEN R, et al. Probiotic bacteria as potential detoxification tools: assessing their heavy metal binding isotherms [J]. Canadian Journal of Microbiology, 2006, 52(9):877-885.
[12] 翟齐啸.乳酸菌减除镉危害的作用及机制研究[D].无锡:江南大学,2015.
[13] SCHARZAMMARETTI P, UBBINK J. The cell wall of lactic acid bacteria: surface constituents and macromolecular conformations [J]. Biophysical Journal, 2003, 85(6):4 076-4 092.
[14] HALTTUNEN T, SALMINEN S, TAHVONEN R. Rapid removal of lead and cadmium from water by specific lactic acid bacteria[J]. International Journal of Food Microbiology, 2007, 114(1):30-35.
[15] YIN R J, ZHAI Q X, YU L L, et al. The binding characters study of lead removal by Lactobacillus plantarum CCFM8661 [J]. European Food Research and Technology, 2016, 242(10):1 621-1 629.
[16] 张何,罗程印,傅昕.模拟肠道环境下肠道益生菌对三种重金属离子的富集作用的研究[J].食品工业科技,2015,36(21):349-352;357.
[17] 李荣,冯朋雅,叶泽,等.肠道修复:一种利用益生菌减少重金属积累的新思路[J].微生物学通报,2019,46(7):1 712-1 722.
[18] 叶峻.食品重金属污染及其防止措施[J].公共卫生与预防医学,2010,21(3):54-56.
[19] KECHAGIA M, BASOULIS D, KONSTANTOPOULOU S, et al. Health benefits of probiotics: A review [J].International Scholarly Research Notices, 2013: 481 651.
[20] HAVENAAR R, BRINK B T, VELD J H. Selection of strains for probiotic use [J]. Probiotics: The Scientific Basis, 1992:209-224.
[21] NAITO Y, UCHIYAMA K, TAKAGI T. A next-generation beneficial microbe: Akkermansia muciniphila [J]. Journal of Clinical Biochemisty and Nutrition, 2018, 63(1):33-35.
[22] 邓欢,赖星,孙志洪,等.革兰氏阴性益生菌大肠杆菌Nissle 1917益生机理及其在仔猪方面的应用[J].动物营养学报,2014,26(9):2476-2482.
[23] FELIS G E, DELLAGLIO F. Taxonomy of Lactobacilli and Bifidobacteria [J]. Current Issues in Intestinal Microbiology, 2007, 8(2):44-61.
[24] HOLZAPFEL W H, HABERER P, GEISEN R, et al. Taxonomy and important features of probiotic microorganisms in food and nutrition[J]. The American Journal of Clinical Nutrition, 2001, 73(2): 365S-373S.
[25] STANTON C, GARDINER G E, MEEHAN H, et al. Market potential for probiotics[J]. The American Journal of Clinical Nutrition, 2001, 73(2):476-483.
[26] EWE J, WANABDULLAH W, LIONG W. Viability and growth characteristics of Lactobacillus in soymilk supplemented with B-vitamins [J]. International Journal of Food Sciences and Nutrition, 2010, 61(1):87-107.
[27] DRISKO J, GILES C K, BISCHOFF B. Probiotics in health maintenance and disease prevention [J]. Alternative Medicine Review. 2003, 8(2):143-155.
[28] 江爱清.益生菌辅助治疗婴幼儿继发性乳糖不耐受症疗效探讨[D].新疆医科大学,2014.
[29] MACK D R, MICHAIL S, WEI S, et al. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression[J]. American Journal of Physiology. 1999, 276(4): 941-950.
[30] GU Q, LI P. Biosynthesis of vitamins by probiotic bacteria [A]. In Probiotics and Prebiotics in Human Nutrition and Health [M], 2016:135-148.
[31] WANG Y, XIE J, LI Y, et al. Probiotic Lactobacillus casei Zhang reduces pro-inflammatory cytokine production and hepatic inflammation in a rat model of acute liver failure[J]. European Journal of Nutrition, 2015, 55(2):821-831.
[32] OHLAND C L, MACNAUGHTON W K. Probiotic bacteria and intestinal epithelial barrier function [J]. American Journal of Physiology-gastrointestinal and Liver Physiology, 2010, 298(6): G807-G819.
[33] 李学超,王建忠,刘元辉.益生菌对机械通气新生儿呼吸道致病菌定植的影响[J].中国当代儿科杂志,2012,14(6):406-408.
[34] GLUCK U, GEBBERS J. Ingested probiotics reduce nasal colonization with pathogenic bacteria (Staphylococcus aureus, Streptococcus pneumoniae and β-hemolytic streptococci) [J]. The American Journal of Clinical Nutrition, 2003, 77(2):517-520.
[35] SÁEZLARA M J, ROBLESSANCHEZ C, RUIZOJEDA F J, et la. Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: a review of human clinical trials [J]. International Journal of Molecular Sciences, 2016, 17(6):928.
[36] CUNNINGHAMRUNDLES S, AHRNE S, BENGMARK S, et al. Probiotics and immune response [J]. The American Journal of Gastroenterology, 2000, 95(1):22-25.
[37] PELTO L, ISOLAURI E, LILIUS E M, et al. Probiotic bacteria down-regulate the milk-induced inflammatory response in milk-hypersensitive subjects but have an immunostimulatory effect in healthy subjects[J]. Clinical & Experimental Allergy, 1998, 28(12):1 474-1 479.
[38] HENKER J, LAASS M W, BLOKHIN B M, et al. The probiotic Escherichia coli strain Nissle 1917 (EcN) stops acute diarrhoea in infants and toddlers [J]. European Journal of Pediatrics, 2007, 166(4):311-318.
[39] DUCROTTÉ P, SAWANT P, JAYANTHI V. Clinical trial: Lactobacillus plantarum 299v (DSM 9843) improves symptoms of irritable bowel syndrome [J].World Journal of Gastroenterology, 2012, 18(30): 4 012-4 018.
[40] World Health Organization. Safety evaluation of certain food additives and contaminants in food[R]. Geneva, 2004.
[41] JARUP L, BERGLUND M, ELINDER C G, et al. Health effects of cadmium exposure-a review of the literature and a risk estimate [J]. Scandinavian Journal of Work, Environment & Health, 1998, 24(1):1-51.
[42] SATO M, KONDOH M. Recent studies on metallothionein: protection against toxicity of heavy metals and oxygen free radicals [J]. Tohoku Journal of Experimental Medicine, 2002, 196(1):9-22.
[43] KLINCK J S, WOOD C M. Gastro-intestinal transport of calcium and cadmium in fresh water and seawater acclimated trout (Oncorhynchus mykiss) [J]. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 2013, 157(2):236-250.
[44] THEVENOD F. Catch me if you can! Novel aspects of cadmium transport in mammalian cells [J]. Biometals, 2010, 23(5):857-875.
[45] MARTINEAU C, ABED E, MÉDINA G, et al. Involvement of transient receptor potential melastatin-related 7 (TRPM7) channels in cadmium uptake and cytotoxicity in MC3T3-E1 osteoblasts[J]. Toxicology Letters, 2010, 199(3):357-363.
[46] ALFVENT, JARUP L, ELINDER C G. Cadmium and lead in blood in relation to low bone mineral density and tubular proteinuria[J]. Environmental Health Perspectives, 2002, 110(7):699- 702.
[47] DIJKSTRA M, HAVINGA R,VONK R J, et al. Bile secretion of cadmium, silver, zinc and copper in the rat. Involvement of various transport systems [J]. Life Sciences, 1996, 59(15):1 237-1 246.
[48] 黄秋婵,韦友欢,黎晓峰.镉对人体健康的危害效应及其机理研究进展[J].安徽农业科学,2007,35(9):2 528-2 531.
[49] 金慧英,胡惠民,周雍.急性镉中毒的肝脏损伤机制及金属硫蛋白的保护作用[J].中华劳动卫生职业病杂志,1998,16(1):43-46.
[50] 朱善良,陈龙.镉毒性损伤及其机制的研究进展[J].生物学教学,2006,31(8):2-5.
[51] IVANINA A V, CHERKASOV A S, SOKOLOVA I M. Effects of cadmium on cellular protein and glutathione synthesis and expression of stress proteins in eastern oysters, Crassostrea virginica Gmelin [J]. The Journal of Experimental Biology, 2008, 211(4):577-586.
[52] SON Y O, WANG X, HITRON J A, et al. Cadmium induces autophagy through ROS-dependent activation of the LKB1-AMPK signaling in skin epidermal cells [J]. Toxicology and Applied Pharmacology, 2011, 255(3):287-296.
[53] LIU J, QU W, KADIISKA M B. Role of oxidative stress in cadmium toxicity and carcinogenesis [J]. Toxicology and Applied Pharmacology, 2009, 238(3):209-214.
[54] HENI J E, MESSAOUDI I, CHAOUACHACHEKIR R B. Effects of sub-chronic exposure to cadmium on some parameters of calcium and iodine metabolisms in the Shaw's jird Meriones shawi [J]. Environmental Toxicology and Pharmacology, 2012, 34(2):136-143.
[55] LIU Y H, LI Y H, LIU K Y, et al. Exposing to cadmium stress cause profound toxic effect on microbiota of the mice intestinal tract[J]. PLOS ONE, 2014, 9(2):e0085323.
[56] TEEMU H, SEPPO S, JUSSI M, et al. Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria [J]. International Journal of Food Microbiology, 2008, 125(2): 170-175.
[57] GERBINO E, CARASI P, TYMCZYSZYN E E, et al. Removal of cadmium by Lactobacillus kefir as a protective tool against toxicity [J]. Journal of Dairy Research, 2014, 81(3):280-287.
[58] ZHAI Q X, WANG G, ZHAO J X, et al. Protective effects of Lactobacillus plantarum CCFM8610 against chronic cadmium toxicity in mice: Intestinal sequestration is not the only route of protection [J]. Applied and Environmental Microbiology, 2014, 80(13):4 063-4 071.
[59] NIES D H. Efflux-mediated heavy metal resistance in prokaryotes [J]. Fems Microbiol Reviews, 2003, 27(2):313-339.
[60] NIES D H. The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cationproton antiporter in Escherichia coli [J]. Journal of Bacteriology, 1995, 177(10):2 707-2 712.
[61] WEI X, FANG L C, CAI P, et al. Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria [J]. Environmental Pollution, 2011, 159(5): 1 369-1 374.
[62] 徐粲然,卢滇楠,刘永民. 生物钝化修复镉污染土壤研究进展[J].化工进展,2014, 33(8):2 174-2 179.
[63] KONHAUSER K O, SCHULTZELAM S, FERRIS F G, et al. Mineral precipitation by epilithic biofims in the Speed River, Ontario, Canada[J]. Applied and Environmental Microbiology, 1994, 60(2):549-553.
[64] TABAK H H, LENS P N, HULLEBUSCH E D V. Developments in bioremediation of soils and sediments polluted with metals and radionuclides-1. microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport [J]. Environmental Science and Bio/Technology, 2005, 4(3):115-156.
[65] 熊婧.乳酸菌对重金属镉的耐受性和吸附机制研究[D].广州:暨南大学,2015.
[66] Joint FAO/WHO Expert Committee on Food Additives. Safety evaluation of certain food additives and contaminants[R]. Geneva, 2011.
[67] 马宝艳,张学林.环境中铅中毒的研究[J].微量元素与健康研究,1999,1:78-80.
[68] 王德青.机体铅代谢及毒性检测[J].国外医学(卫生学分册),1985,5:277-280.
[69] FLORA S J S, MITTAL M, MEHTA A. Heavy metal induced oxidative stress & its possible reversal by chelation therapy[J]. The Indian journal of medical research, 2008, 128(4):501-523.
[70] DART R C, HURLBUT K M, HASSEN B, et al. Medical Toxicology [M]. 3rd ed. PA, USA: Lippincott Williams & Wilkins, 2004:1 423-1 432.
[71] PAWLIKSKOWRONSKA B. Relationships between acid-soluble thiol peptides and accumulated Pb in the green alga Stichococcus bacillaris [J]. Aquatic Toxicology, 2000, 50(3): 221-230.
[72] LIDSKY T I, SCHNEIDER J S. Lead neurotoxicity in children: basic mechanisms and clinical correlates [J]. Brain, 2003, 126(1):5-19.
[73] TIAN F W, ZHAI Q X, ZHAO J X, et al. Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice[J]. Biological trace element research, 2012, 150(1):264-271.
[74] ZANJANI S Y, ESKANDARI M R, KAMALI K, et al. The effect of probiotic bacteria (Lactobacillus acidophilus and Bifidobacterium lactis) on the accumulation of lead in rat brains [J]. Environmental Science and Pollution Research, 2016:1-6.
[75] DELCOUR J, FERAIN T, DEGHORAIN M, et al. The biosynthesis and functionality of the cell-wall of lactic acid bacteria [J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 1999, 76(1-4):159-184.
[76] 徐颖,李洁,贺丹丹,等. 两株乳酸菌对铅的吸附作用[J].食品与机械,2018,34(3):49-53.
[77] 赵维梅.环境中砷的来源及影响[J].科技资讯,2010,(8):146.
[78] NORMAN C N. Chemistry of arsenic, antimony and bismuth [M]. Blackie Academic & Professional, 1998:547-558.
[79] National Institute for Occupational Safety and Health (NIOSH). Arsine: Immediately Dangerous to Life and Health Concentrations (IDLH) [EB/OL]. 2014. https://www.cdc.gov/niosh/idlh/7784421.html.
[80] National Institute for Occupational Safety and Health (NIOSH). Methyl methacrylate: Immediately dangerous to life and health concentrations (IDLH) [EB/OL]. 2014. https://www.cdc.gov/niosh/idlh/80626.html.
[81] OPRESKO D M. Toxicity profiles[R].Risk Assessment Information System. TN, USA, 1992.
[82] 王瑛,陈苗苗,谭婷婷,等.海产品中的砷及其代谢机制的研究进展[J].现代食品科技,2014,30(11):256-265.
[83] PERGANTIS S A, FRANCESCONI K A, GOESSLER W, et al. Characterization of arsenosugars of biological origin using fast atom bombardment tandem mass spectrometry [J]. Analytical Chemistry, 1997, 69(23):4 931-4 937.
[84] GONG Z L, LU X F, MA M S, et al. Arsenic speciation analysis [J]. Talanta, 2002, 58(1): 77-96.
[85] DEVESA V, MARTINEZ A, SUNER M A, et al. Effect of cooking temperatures on chemical changes in species of organic arsenic in seafood[J]. Journal of Agricultural and Food Chemistry, 2001, 49(5):2 272-2 276.
[86] RATNAIKE R N. Acute and chronic arsenic toxicity [J]. Postgraduate Medical Journal, 2003, 79(933):391-396.
[87] LOGEMANN E, KRUTZFELDT B, POLLAK S. Suicidal administration of elemental arsenic [J]. Arch Kriminol, 1990, 185:80-88.
[88] NAUJOKAS M F, ANDERSON B E, AHSAN H, et al. The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem [J]. Environmental Health Perspectives, 2013, 121(3):295-302.
[89] 肖发怀,陈丽丽,刘丽娟,等.急性砷化物中毒的临床诊疗分析[J].世界最新医学信息文摘,2016,16(93):34-35.
[90] MAZUMDER D N. Chronic arsenic toxicity & human health [J]. Indian Journal of Medical Research,2008,128(4):436-447.
[91] GUO H, CHIANG H, HU H, et al. Arsenic in drinking water and incidence of urinary cancers[J]. Epidemiology, 1997, 8(5):545-550.
[92] CHIOU H G, HUANG W, SU C L, et al. Dose-response relationship between prevalence of cerebrovascular disease and ingested inorganic arsenic[J]. Stroke, 1997, 28(9):1 717-1 723.
[93] MAZUMDER D G, DASGUPTA B U. Chronic arsenic toxicity: Studies in West Bengal, India [J]. Kaohsiung Journal of Medical Sciences, 2011, 27(9):360-370.
[94] TSAI S, WANG T, KO Y. Mortality for certain diseases in areas with high levels of arsenic in drinking water [J]. Archives of Environmental Health, 1999, 54(3):186-193.
[95] ABERNATHY C O, LIU Y P, LONGFELLOW D G, et al. Arsenic: health effects, mechanisms of actions and research issues [J]. Environmental Health Perspectives, 1999, 107(7):593-597.
[96] CHEN L, LIANG R J, TAN T T, et al. Recent development in arsenic speciation and toxicity reduction of inorganic arsenic in food [J]. European Journal of BioMedical Research, 2016, 2(1):27-31/.
[97] MILLER W H, SCHIPPER H M, LEE J, et al. Mechanisms of action of arsenic trioxide [J]. Cancer Research, 2002, 62(14):3 893-3 903.
[98] CASTROCORONEL T, RAZO L M D, HUERTA M, et al. Arsenite exposure downregulates EAAT1/GLAST transporter expression in glial cells[J]. Toxicological sciences, 2011, 122(2):539-550.
[99] AMEYAR M, WISNIEWSKA M, WEITZMAN J B. A role for AP-1 in apoptosis: the case for and against [J]. Biochimie, 2003, 85(8):747-752.
[100] HOSSAIN E, OTA A, TAKAHASHI M, et al. Arsenic upregulates the expression of angiotensin II type I receptor in mouse aortic endothelial cells[J]. Toxicology Letters, 2013, 220(1):70-75.
[101] SASAKI A, OSHIMA Y, FUJIMURA A. An approach to elucidate potential mechanism of renal toxicity of arsenic trioxide [J]. Experimental Hematology, 2007, 35(2):252-262.
[102] ZHANG T C, SCHMITT M T, MUMFORD J L. Effects of arsenic on telomerase and telomeres in relation to cell proliferation and apoptosis in human keratinocytes and leukemia cells in vitro[J]. Carcinogenesis, 2003, 24(11): 1 811-1 817.
[103] HU Y, SU L, SNOW E T. Arsenic toxicity is enzyme specific and its effects on ligation are not caused by the direct inhibition of DNA repair enzymes [J]. Mutation Research-DNA Repair, 1998, 408(3):203-218.
[104] TCHOUNWOU P B, UDENSI U K, ISOKPEHI R D, et al. Arsenic and Cancer[A]. In Handbook of Arsenic Toxicology[M], Academic Press, 2015:533-555.
[105] TAWFIK D S, VIOLA R E. Arsenate replacing phosphate: Alternative life chemistries and ion promiscuity [J]. Biochemistry, 2011, 50(7): 1 128-1 134.
[106] 化学化工大辞典[M].北京:化学工业出版社,2003:2 032.
[107] HUGHES M F, RAZO L M D, KENYON E M. Dose-dependent effects on the disposition of monomethylarsonic acid and dimethylarsinic acid in the mouse after intravenous administration[J]. Journal of Toxicology and Environmental Health, Part A, 1998, 53:95-112.
[108] WANG T C, JAN K Y, WANG A S S, et al. Trivalent arsenicals induce lipid peroxidation, protein carbonylation, and oxidative DNA damage in human urothelial cells [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 615(1):75-86.
[109] 王鹤茹,刘燕舞.污染土壤生物修复的研究进展[J].安徽农业科学,2010,38(20):11 013-11 014;11 017.
[110] NAIDU R, SMITH E, OWENS G, et al. Managing arsenic in the environment from soil to human health[M]. Australia: Commonwealth Scientific and Industrial Research Organization Press, 2006:417-432.
[111] HENRY H, CREEN. Isolation and description of a bacterium causing oxidation of arsenite to arsenate in cattle-dipping baths [J]. Journal of the South African Veterinary Association, 1918, 34(6):593-599.
[112] VALENZUELA C, CAMPOS V L, YANEZ J, et al. Isolation of arsenite-oxidizing bacteria from arsenic-enriched sediments from Camarones River, Northern Chile[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 82(5):593-596.
[113] 吴锡,许丽英,张雪霞,等.缺氧条件下土壤砷的形态转化与环境行为研究[J].环境科学,2012,33(1):273-279.
[114] 余飞,万俊锋,赵雅光,等.硫酸盐还原菌SRB除砷的影响因素[J].环境工程学报,2016,10(7):3 898-3 904.
[115] JAIN A, SHARMA V K, MBUYA O S. Removal of arsenite by Fe (VI), Fe(VI)/Fe(III), and Fe(VI)/Al(III) salts: Effect of pH and anions[J]. Journal of Hazardous Materials. 2009, 169(1):339-344.
[116] 李素玉.环境微生物分类与检测技术[M].化学工业出版社,2005:147-148.
[117] TAKEUCHI M, KAWAHATA H, GUPTA L P, et al. Arsenic resistance and removal by marine and non-marine bacteria[J]. Journal of Biotechnology, 2007, 127(3):434-442.
[118] 刘玲.砷污染土壤中砷氧化菌的筛选[D].广州:广东工业大学,2007.
[119] 苏世鸣,曾希柏,蒋细良,等.高耐砷真菌的分离及其耐砷能力[J].应用生态学报,2010,21(12):3 225-3 230.
[120] HALTTUNEN T, FINELL M, SALMINEN S. Arsenic removal by native and chemically modified lactic acid bacteria [J]. International Journal of Food Microbiology, 2007, 120(1):173-178.
[121] SUN G X, WIELE T V D, ALAVA P, et al. Arsenic in cooked rice: effect of chemical, enzymatic and microbial processes on bioaccessibility and specia-tion in the human gastrointestinal tract [J]. Environmental Pollution, 2012, 162:241-246.
[122] BISANZ J, ENOS M, MWANGA J, et al. Randomized open-label pilot study of the influence of probiotics and the gut microbiome on toxic metal levels in tanzanian pregnant women and school children [J]. MBio, 2014, 5(5):e01580-14.
[123] SILVER S, PHUNG L T. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions [J]. Journal of Industrial Microbiology & Biotechnology, 2005, 32(11-12):587-605.
[124] ROSEN B P. Biochemistry of arsenic detoxification [J]. FEBS Letters, 2002, 529(1):86-92.
[125] CARLIN A, SHI W, DEY S, et al. The ars operon of Escherichia coli confers arsenical and antimonial resistance [J]. Journal of Bacteriology, 1995, 177(4):981-986.
[126] SILVER S, PHUNG L T. Bacterial heavy metal resistance: new surprises [J]. Annual Review of Microbiology, 1996, 50(1):753-789.
[127] FRANKENBERGER W T. Environmental chemistry of arsenic [M]. New York: Marcel Dekker, 2002:343-361.
[128] SILVER S, PHUNG L T. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic [J]. Applied and Environmental Microbiology, 2005, 71(2):599-608.
[129] THOMAS DJ, WATERS S B, STYBLO M. Elucidating the pathway for arsenic methylation [J]. Toxicology and Applied Pharmacology, 2004, 198(3):319-326.
[130] NRIAGU J O. Arsenic in the Environment, Part 1: Cycling and Characterization [M]. New York: Wiley, 1994:155-187.
[131] MUKHOPADHYAY R, ROSEN B P, PHUNG LT, et al. Microbial arsenic: from geocycles to genes and enzymes [J]. FEMS Microbiology Reviews, 2002, 26(3):311-325.
[132] BRANDES E A, GREENAWAY H T, STONE H E N. Ductility in chromium [J]. Nature, 1956, 178(4 533):587.
[133] COTTON F A. Chromium compound. In Multiple Bonds Between Metal Atoms [M].Oxford University Press, 2005:35-68.
[134] US National Institutes of Health. Chromium [EB/OL]. https://ods.od.nih.gov/factsheets/Chromium-HealthProfessional/. 2016.
[135] DAYAN A, PAINE A J. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: Review of the literature from 1985 to 2000[J].Human&Experimental Toxicology, 2001, 20(9): 439-451.
[136] KATZ S, SALEM H. The toxicology of chromium with respect to its chemical speciation: A review [J]. Journal of Applied Toxicology, 1993, 13(3):217-224.
[137] 高步先,夏耕田,张乃生.铬的生物学功能及其在动物体内的代谢[J].动物医学进展, 2002, 23(6): 49-51.
[138] 朱良印,郑林英.微量元素铬的吸收代谢与生化功能[J].中国畜牧兽医,2006,33(4):13-15.
[139] 王青,王娜.铬对人体与环境的影响及防治[J].微量元素与健康研究,2011,28(5):64-66.
[140] 中国营养学会编著.中国居民膳食营养素参考摄入量速查手册[M].2013版.北京:中国标准出版社.27.
[141] EASTMOND D A, MACGREGOR J T, SLESINSKI R S. Trivalent chromium: Assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement [J]. Critical Reviews in Toxicology, 2008, 38(3):173-190.
[142] RAJA N S, NAIR B U. Chromium (III) complexes inhibit transcription factors binding to DNA and associated gene expression [J]. Toxicology, 2008, 251(1):61-65.
[143] LI MM, ZHU JY, GAN M, et al. Characteristics of chromium coprecipitation mediated by Acidithiobacillus ferrooxidans DC [J]. Water Air Soil Pollution, 2014, 225(8):2 071.
[144] MUDHOO A, GARG V K, WANG S B. Removal of heavy metals by biosorption [J]. Environmental Chemistry Letters, 2011, 10(2):109-117.
[145] UPRETI R K, SHRIVASTAVA R, CHATURVEDI U C. Gut microflora & toxic metals:chromium as a model [J]. Indian Journal of Medical Research, 2004, 119(2):49-59.
[146] ZHITKOVICH A. Chromium in drinking water: Sources, metabolism, and cancer risks [J]. American Chemical Society, 2011, 24(10):1 617-1 629.
[147] DAS S, CHANDRA A L. Chromate reduction in Streptomyces [J]. Cellular and Molecular Life Sciences, 1990, 46(7):731-733.
[148] 马小珍,费保进,金楠,等.脱硫弧菌SRB7对重金属铬Cr(VI)的还原特性[J].微生物学通报,2009,36(9):1 324-1 328.
[149] GOULHEN F, GLOTER A, GUYOT F, et al. Cr(VI) detoxification by Desulfovibrio vulgaris strain Hildenborough: microbe-metal interactions studies[J]. Applied Microbiology and Biotechnology, 2006, 71(6):892- 897.
[150] OHTAKE H, FUJII E, TODA K. A survey of effective electron donors for reduction of toxic hexavalent chromium by Enterobacter cloacae (strain HO1) [J]. Journal of General and Applied Microbiology, 1990, 36(3):203-208.
[151] WANG P, TODA K, OHTAKE H, et al. Membrane-bound respiratory system of Enterobacter cloacae strain HO1 grown anaerobically with chromate[J]. FEMS Microbiol Letters, 1991, 78(1):11-16.
[152] MCLEAN J S, BEVERIDGE T J. Chromate reduction by a Pseudomonad Isolated from a Site contaminated with chromated copper arsenate [J]. Applied and Environmental Microbiology, 2001, 67(3):1 076-1 084.
[153] LIU Y G, XU W H, ZENG G M, Et al. Cr(VI) reduction by Bacillus sp. isolated from chromium landfill[J]. Process Biochemistry, 2006, 41(9):1 981-1 986.
[154] LATHA S, VINOTHINI G, DHANASEKARAN D. Chromium [Cr(VI)] biosorption property of the newly isolated actinobacterial probiont Streptomyces werraensis LD22[J]. BioTechniques, 2015, 5:423-432.
[155] UPRETI R K, SINHA V, MISHRA R, et al. In vitro development of resistance to arsenite and chromium-VI in Lactobacilli strains as perspective attenuation of gastrointestinal disorder [J]. Journal of Environment Biology, 2011, 32(3):325-332.
[156] KUMAR C S V S, RANI M U, REDDY D D, et al. Effect of probiotic strain Lactobacillus casei strain 17 AGAINST toxicity induced by chromium in female reproductive system of rats [J]. International Journal of Pharm and Bio Sciences, 2013, 4(1):1 119-1 130.
[157] KSHEMINSKA H, FEDOROVYCH D V, HONCHAR T, et al. Yeast tolerance to chromium depends on extracellular chromate reduction and Cr (III) chelation [J]. Food Technology and Biotechnology, 2008, 46(4):419-426.
[158] SHRIVASTAVA R, UPRETI R K, CHATURVEDI U C. Various cells of the immune system and intestine differ in their capacity to reduce hexavalent chromium [J]. FEMS Immunology and Medical Microbiology, 2003, 38(1):65-70.
[159] 孙嘉龙,李梅,曾德华.微生物对重金属的吸附、转化作用[J].贵州农业科学.2007, 35(5):147-150.
[160] 杨峰,尹华,彭辉,等.酵母融合菌对铬离子的吸附特性研究[J].环境化学,2007,26(3):318-322.
[161] 高小朋,张欠欠,许平,等.微生物还原Cr(VI)的研究进展[J].微生物学通报,2008,35(5):820-824.
[162] ELANGOVAN R, ABHIPSA S, ROHIT B, et al. Reduction of Cr(VI) by a Bacillus sp [J]. Biotechnology Letters, 2006, 28:247-252.
[163] DEFLORA S, WETTERHAN K E. Mechanisms of chromium metabolism and genotoxicity [J]. Life Chemical Report, 1989, 7:169-244.
[164] VIERA M, CURUTICHET G, DONATI E. A combined bacterial process for the reduction and immobilization of chromium [J]. International Biodeterioration & Biodegradation, 2003, 52(1):31-34.
[165] BOPP L H, EHRLICH H L. Chromate resistance and reduction in Pseudomonas fluorescens strain LB300 [J]. Archives of Microbiology, 1988, 150(5):426-431.
[166] GHARIEB M M, GADD G M. Role of glutathione in detoxification of metal (loid)s by Saccharomyces cerevisiae[J]. Biometals, 2004, 17(2):183-188.
[167] 邵雷.汞污染对食品质量的危害及对人体的伤害[J].现代食品,2016,1(2):36-37.
[168] 曾少军,曾凯超,杨来.中国汞污染治理的现状与策略研究.[J]中国人口、资源与环境,2014,24(S1):92-96.
[169] 苗利军.汞污染对人体的危害[J].农业工程,2013,3(3):83-84.
[170] KOT A, NAMIESNIK J. The role of speciation in analytical chemistry [J]. Trends in Analytical Chemistry, 2000, 19(2-3):69-79.
[171] 冯新斌,仇广乐,付学吾,等.环境汞污染[J].化学进展,2009,21(Z1):436-457.
[172] BERNARD S R, 苏鲁.甲基汞和无机汞的代谢模式[J].国外医学(卫生学分册).1985,(2):92-94.
[173] HOLMES A S, BLAXILL M F, HALEY B E. Reduced levels of mercury in first baby haircuts of autistic children[J]. International Journal of Toxicology, 2003, 22(4):277-285.
[174] 张燕萍,颜崇淮,沈晓明.环境中汞污染来源、人体暴露途径及其检测方法[J].广东微量元素科学, 2004,11(6):11-16.
[175] 李爱,陈雷,胡新武,等.甲基汞诱导海马神经细胞凋亡及其机制研究[J].环境与健康杂志,2008, 25(1):18-21;95.
[176] 金明华,姜春明,王欣,等.甲基汞对小鼠睾丸生殖细胞凋亡作用[J].中国公共卫生,2006,22(10): 1 225-1 226.
[177] 林雪梅,张海英,姜蓉,等.低剂量甲基汞促进鼠胚肠上皮细胞凋亡及相关机制的体内实验[J].第三军医大学学报,2007,29(5):410-412.
[178] 何继亮.用液体贮存法研究氯化甲基汞对人体淋巴细胞的遗传毒性效应[J].浙江医科大学学报,1994,6:265-268.
[179] GREENRUIZ C. Mercury (II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary [J]. Bioresource Technology, 2006, 97(15):1 907-1 911.
[180] KINOSHITA H, SOHMA Y, OHTAKE F, et al. Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein[J]. Research in Microbiology, 2013, 164(7):701-709.
[181] ROWLAND I R, DAVIESM J, EVANS J G. Tissue content of mercury in rats given methylmercuric chloride orally: Influence of intestinal flora [J]. Archives of Environmental Health: An International Journal, 2013, 35(3):155-160.
[182] KINOSHITA H, SOHMA Y, OHTAKE F, et al. Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein[J]. Research in Microbiology, 2013, 164(7): 701-709.
[183] BOONYODYING K, WATCHARASUPAT T, YOTPANYA W, et al. Factors affecting the binding of a recombinant heavy metal-binding domain (CXXC motif) protein to heavy metals[J]. Environment Asia, 2012, 5(2):70-75.
[184] 王欣卉,王颖,佐兆杭,等.酵母源金属硫蛋白对慢性汞中毒小鼠排汞及肝脏损伤修复作用[J].食品科学,2017,38(19):195-200.
[185] ROWLAND LR, ROBINSON R, DOHERTY R A. Effects of diet on mercury metabolism and excretion in mice given methylmercury: role of gut flora [J]. Archives of Environmental Health: An International Journal, 1984, 39(6):401-408.
[186] DUCROS V. Chromium metabolism: a literature review [J]. Biological Trace Element Research, 1992, 32:65-77.
[187] WELINDER H, LITTORIN M, GULLBERG B, et al. Elimination of chromium in urine after stainless steel welding[J]. Scandinavian Journal of Work, Environment & Health, 1983, 9(5):397-403.