综述与专题评论

重金属危害机制及益生菌清除重金属机制研究进展

  • 王瑛 ,
  • 林钰清 ,
  • 李爱军 ,
  • 林启豪 ,
  • 薛雪 ,
  • 王洪飞 ,
  • 陈琬颖
展开
  • 1 (暨南大学 理工学院,广东 广州,510632)
    2 (暨南大学 国际学院,广东 广州,510632)
    3 (通标标准技术服务有限公司广州分公司,广东 广州,510663)
博士,副教授(本文通讯作者,E-mail:twangywy@jnu.edu.cn)。

收稿日期: 2019-06-12

  网络出版日期: 2020-03-13

基金资助

国家自然科学基金-青年基金(31101307)

Research progress on the mechanism of heavy metal contamination and probiotics sequestration

  • WANG Ying ,
  • LIN Yuqing ,
  • LI Aijun ,
  • LIN Qihao ,
  • XUE Xue ,
  • WANG Hongfei ,
  • CHEN Wanying
Expand
  • 1 (Department of Food Science & Engineering, Jinan University, Guangzhou 510632, China)
    2 (International School, Jinan University, Guangzhou 510632, China)
    3 (SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch, Guangzhou 510632, China)

Received date: 2019-06-12

  Online published: 2020-03-13

摘要

随着工业发展,大量重金属通过工业废水废渣等方式排入空气和土壤,对环境造成污染,这些重金属一旦通过食物链、空气和水进入人体,就难以排出。工业上已经利用微生物对重金属的吸附、沉淀及氧化还原等能力,清洁含有重金属的废渣废水。益生菌也具有相似的能力,因此,适当利用益生菌可帮助人体排出重金属。该文综述了镉、铅、砷、铬和汞5种在食物中最常见的重金属的危害机制及微生物尤其是益生菌清除重金属的机制。

关键词: 益生菌; 重金属; ; ; ; ;

本文引用格式

王瑛 , 林钰清 , 李爱军 , 林启豪 , 薛雪 , 王洪飞 , 陈琬颖 . 重金属危害机制及益生菌清除重金属机制研究进展[J]. 食品与发酵工业, 2020 , 46(3) : 281 -292 . DOI: 10.13995/j.cnki.11-1802/ts.021349

Abstract

Food chain could be contaminated by heavy metals accumulated from polluted industrial sources. Once heavy metals entered human body, excretion rate is relatively low. Microorganisms have been widely employed by the industry as means to remove heavy metals from waste water and residues. The major mechanisms involved in these processes include microorganism absorption, precipitation and oxidation-reduction. Some probiotics have the similar capabilities. Therefore, the appropriate application of probiotics implies their potential role in removing heavy metals from human body. This paper reviewed the potential application of probiotics for the removal of five most common heavy metals in food-cadmium, lead, arsenic, chromium and mercury, as well the related mechanisms.

参考文献

[1] 郑喜珅,鲁安怀,高翔,等.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
[2] 郭轶琼,宋丽.重金属废水污染及其治理技术进展[J].广州化工,2010,38(4):18-20.
[3] 朱石嶙,冯茜丹,党志.大气颗粒物中重金属的污染特性及生物有效性研究进展[J].地球与环境,2008,36(1):26-32.
[4] 孙光闻.重金属污染及治理研究进展[J].南方农业,2007,1(2):41-43;52.
[5] 马前,张小龙.国内外重金属废水处理新技术的研究进展[J].环境工程学报,2007,1(7):10-14.
[6] FU F L, WANG Q. Removal of heavy metal ions from wastewaters: A review [J]. Journal of Environmental Management, 2011, 92(3):407-418.
[7] CARLOS A C A D, DUTA F P. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis [J]. Brazilian Journal of Microbiology, 2001, 32(1):1-5.
[8] YAN L U, YIN H H, ZHANG S, et al. Biosorption of inorganic and organic arsenic from aqueous solution by Acidithiobacillus ferrooxidans BY-3[J]. Journal of Hazardous Materials, 2010, 178(1-3):209-217.
[9] PATEL P, GOULHEN F, BOOTHMAN C, et al. Arsenate detoxification in a Pseudomonad hypertolerant to arsenic [J]. Archives of Microbiology, 2007, 187(3):171-183.
[10] PUZON G J, PETERSEN J N, ROBERTS A G, et al. A bacterial flavin reductase system reduces chromate to a soluble chromium(III)-NAD(+) complex[J]. Biochemical and Biophysical Research Communications, 2002, 294(1):76-81.
[11] IBRAHIM F, HALTTUNEN T, TAHVONEN R, et al. Probiotic bacteria as potential detoxification tools: assessing their heavy metal binding isotherms [J]. Canadian Journal of Microbiology, 2006, 52(9):877-885.
[12] 翟齐啸.乳酸菌减除镉危害的作用及机制研究[D].无锡:江南大学,2015.
[13] SCHARZAMMARETTI P, UBBINK J. The cell wall of lactic acid bacteria: surface constituents and macromolecular conformations [J]. Biophysical Journal, 2003, 85(6):4 076-4 092.
[14] HALTTUNEN T, SALMINEN S, TAHVONEN R. Rapid removal of lead and cadmium from water by specific lactic acid bacteria[J]. International Journal of Food Microbiology, 2007, 114(1):30-35.
[15] YIN R J, ZHAI Q X, YU L L, et al. The binding characters study of lead removal by Lactobacillus plantarum CCFM8661 [J]. European Food Research and Technology, 2016, 242(10):1 621-1 629.
[16] 张何,罗程印,傅昕.模拟肠道环境下肠道益生菌对三种重金属离子的富集作用的研究[J].食品工业科技,2015,36(21):349-352;357.
[17] 李荣,冯朋雅,叶泽,等.肠道修复:一种利用益生菌减少重金属积累的新思路[J].微生物学通报,2019,46(7):1 712-1 722.
[18] 叶峻.食品重金属污染及其防止措施[J].公共卫生与预防医学,2010,21(3):54-56.
[19] KECHAGIA M, BASOULIS D, KONSTANTOPOULOU S, et al. Health benefits of probiotics: A review [J].International Scholarly Research Notices, 2013: 481 651.
[20] HAVENAAR R, BRINK B T, VELD J H. Selection of strains for probiotic use [J]. Probiotics: The Scientific Basis, 1992:209-224.
[21] NAITO Y, UCHIYAMA K, TAKAGI T. A next-generation beneficial microbe: Akkermansia muciniphila [J]. Journal of Clinical Biochemisty and Nutrition, 2018, 63(1):33-35.
[22] 邓欢,赖星,孙志洪,等.革兰氏阴性益生菌大肠杆菌Nissle 1917益生机理及其在仔猪方面的应用[J].动物营养学报,2014,26(9):2476-2482.
[23] FELIS G E, DELLAGLIO F. Taxonomy of Lactobacilli and Bifidobacteria [J]. Current Issues in Intestinal Microbiology, 2007, 8(2):44-61.
[24] HOLZAPFEL W H, HABERER P, GEISEN R, et al. Taxonomy and important features of probiotic microorganisms in food and nutrition[J]. The American Journal of Clinical Nutrition, 2001, 73(2): 365S-373S.
[25] STANTON C, GARDINER G E, MEEHAN H, et al. Market potential for probiotics[J]. The American Journal of Clinical Nutrition, 2001, 73(2):476-483.
[26] EWE J, WANABDULLAH W, LIONG W. Viability and growth characteristics of Lactobacillus in soymilk supplemented with B-vitamins [J]. International Journal of Food Sciences and Nutrition, 2010, 61(1):87-107.
[27] DRISKO J, GILES C K, BISCHOFF B. Probiotics in health maintenance and disease prevention [J]. Alternative Medicine Review. 2003, 8(2):143-155.
[28] 江爱清.益生菌辅助治疗婴幼儿继发性乳糖不耐受症疗效探讨[D].新疆医科大学,2014.
[29] MACK D R, MICHAIL S, WEI S, et al. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression[J]. American Journal of Physiology. 1999, 276(4): 941-950.
[30] GU Q, LI P. Biosynthesis of vitamins by probiotic bacteria [A]. In Probiotics and Prebiotics in Human Nutrition and Health [M], 2016:135-148.
[31] WANG Y, XIE J, LI Y, et al. Probiotic Lactobacillus casei Zhang reduces pro-inflammatory cytokine production and hepatic inflammation in a rat model of acute liver failure[J]. European Journal of Nutrition, 2015, 55(2):821-831.
[32] OHLAND C L, MACNAUGHTON W K. Probiotic bacteria and intestinal epithelial barrier function [J]. American Journal of Physiology-gastrointestinal and Liver Physiology, 2010, 298(6): G807-G819.
[33] 李学超,王建忠,刘元辉.益生菌对机械通气新生儿呼吸道致病菌定植的影响[J].中国当代儿科杂志,2012,14(6):406-408.
[34] GLUCK U, GEBBERS J. Ingested probiotics reduce nasal colonization with pathogenic bacteria (Staphylococcus aureus, Streptococcus pneumoniae and β-hemolytic streptococci) [J]. The American Journal of Clinical Nutrition, 2003, 77(2):517-520.
[35] SÁEZLARA M J, ROBLESSANCHEZ C, RUIZOJEDA F J, et la. Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: a review of human clinical trials [J]. International Journal of Molecular Sciences, 2016, 17(6):928.
[36] CUNNINGHAMRUNDLES S, AHRNE S, BENGMARK S, et al. Probiotics and immune response [J]. The American Journal of Gastroenterology, 2000, 95(1):22-25.
[37] PELTO L, ISOLAURI E, LILIUS E M, et al. Probiotic bacteria down-regulate the milk-induced inflammatory response in milk-hypersensitive subjects but have an immunostimulatory effect in healthy subjects[J]. Clinical & Experimental Allergy, 1998, 28(12):1 474-1 479.
[38] HENKER J, LAASS M W, BLOKHIN B M, et al. The probiotic Escherichia coli strain Nissle 1917 (EcN) stops acute diarrhoea in infants and toddlers [J]. European Journal of Pediatrics, 2007, 166(4):311-318.
[39] DUCROTTÉ P, SAWANT P, JAYANTHI V. Clinical trial: Lactobacillus plantarum 299v (DSM 9843) improves symptoms of irritable bowel syndrome [J].World Journal of Gastroenterology, 2012, 18(30): 4 012-4 018.
[40] World Health Organization. Safety evaluation of certain food additives and contaminants in food[R]. Geneva, 2004.
[41] JARUP L, BERGLUND M, ELINDER C G, et al. Health effects of cadmium exposure-a review of the literature and a risk estimate [J]. Scandinavian Journal of Work, Environment & Health, 1998, 24(1):1-51.
[42] SATO M, KONDOH M. Recent studies on metallothionein: protection against toxicity of heavy metals and oxygen free radicals [J]. Tohoku Journal of Experimental Medicine, 2002, 196(1):9-22.
[43] KLINCK J S, WOOD C M. Gastro-intestinal transport of calcium and cadmium in fresh water and seawater acclimated trout (Oncorhynchus mykiss) [J]. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 2013, 157(2):236-250.
[44] THEVENOD F. Catch me if you can! Novel aspects of cadmium transport in mammalian cells [J]. Biometals, 2010, 23(5):857-875.
[45] MARTINEAU C, ABED E, MÉDINA G, et al. Involvement of transient receptor potential melastatin-related 7 (TRPM7) channels in cadmium uptake and cytotoxicity in MC3T3-E1 osteoblasts[J]. Toxicology Letters, 2010, 199(3):357-363.
[46] ALFVENT, JARUP L, ELINDER C G. Cadmium and lead in blood in relation to low bone mineral density and tubular proteinuria[J]. Environmental Health Perspectives, 2002, 110(7):699- 702.
[47] DIJKSTRA M, HAVINGA R,VONK R J, et al. Bile secretion of cadmium, silver, zinc and copper in the rat. Involvement of various transport systems [J]. Life Sciences, 1996, 59(15):1 237-1 246.
[48] 黄秋婵,韦友欢,黎晓峰.镉对人体健康的危害效应及其机理研究进展[J].安徽农业科学,2007,35(9):2 528-2 531.
[49] 金慧英,胡惠民,周雍.急性镉中毒的肝脏损伤机制及金属硫蛋白的保护作用[J].中华劳动卫生职业病杂志,1998,16(1):43-46.
[50] 朱善良,陈龙.镉毒性损伤及其机制的研究进展[J].生物学教学,2006,31(8):2-5.
[51] IVANINA A V, CHERKASOV A S, SOKOLOVA I M. Effects of cadmium on cellular protein and glutathione synthesis and expression of stress proteins in eastern oysters, Crassostrea virginica Gmelin [J]. The Journal of Experimental Biology, 2008, 211(4):577-586.
[52] SON Y O, WANG X, HITRON J A, et al. Cadmium induces autophagy through ROS-dependent activation of the LKB1-AMPK signaling in skin epidermal cells [J]. Toxicology and Applied Pharmacology, 2011, 255(3):287-296.
[53] LIU J, QU W, KADIISKA M B. Role of oxidative stress in cadmium toxicity and carcinogenesis [J]. Toxicology and Applied Pharmacology, 2009, 238(3):209-214.
[54] HENI J E, MESSAOUDI I, CHAOUACHACHEKIR R B. Effects of sub-chronic exposure to cadmium on some parameters of calcium and iodine metabolisms in the Shaw's jird Meriones shawi [J]. Environmental Toxicology and Pharmacology, 2012, 34(2):136-143.
[55] LIU Y H, LI Y H, LIU K Y, et al. Exposing to cadmium stress cause profound toxic effect on microbiota of the mice intestinal tract[J]. PLOS ONE, 2014, 9(2):e0085323.
[56] TEEMU H, SEPPO S, JUSSI M, et al. Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria [J]. International Journal of Food Microbiology, 2008, 125(2): 170-175.
[57] GERBINO E, CARASI P, TYMCZYSZYN E E, et al. Removal of cadmium by Lactobacillus kefir as a protective tool against toxicity [J]. Journal of Dairy Research, 2014, 81(3):280-287.
[58] ZHAI Q X, WANG G, ZHAO J X, et al. Protective effects of Lactobacillus plantarum CCFM8610 against chronic cadmium toxicity in mice: Intestinal sequestration is not the only route of protection [J]. Applied and Environmental Microbiology, 2014, 80(13):4 063-4 071.
[59] NIES D H. Efflux-mediated heavy metal resistance in prokaryotes [J]. Fems Microbiol Reviews, 2003, 27(2):313-339.
[60] NIES D H. The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cationproton antiporter in Escherichia coli [J]. Journal of Bacteriology, 1995, 177(10):2 707-2 712.
[61] WEI X, FANG L C, CAI P, et al. Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria [J]. Environmental Pollution, 2011, 159(5): 1 369-1 374.
[62] 徐粲然,卢滇楠,刘永民. 生物钝化修复镉污染土壤研究进展[J].化工进展,2014, 33(8):2 174-2 179.
[63] KONHAUSER K O, SCHULTZELAM S, FERRIS F G, et al. Mineral precipitation by epilithic biofims in the Speed River, Ontario, Canada[J]. Applied and Environmental Microbiology, 1994, 60(2):549-553.
[64] TABAK H H, LENS P N, HULLEBUSCH E D V. Developments in bioremediation of soils and sediments polluted with metals and radionuclides-1. microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport [J]. Environmental Science and Bio/Technology, 2005, 4(3):115-156.
[65] 熊婧.乳酸菌对重金属镉的耐受性和吸附机制研究[D].广州:暨南大学,2015.
[66] Joint FAO/WHO Expert Committee on Food Additives. Safety evaluation of certain food additives and contaminants[R]. Geneva, 2011.
[67] 马宝艳,张学林.环境中铅中毒的研究[J].微量元素与健康研究,1999,1:78-80.
[68] 王德青.机体铅代谢及毒性检测[J].国外医学(卫生学分册),1985,5:277-280.
[69] FLORA S J S, MITTAL M, MEHTA A. Heavy metal induced oxidative stress & its possible reversal by chelation therapy[J]. The Indian journal of medical research, 2008, 128(4):501-523.
[70] DART R C, HURLBUT K M, HASSEN B, et al. Medical Toxicology [M]. 3rd ed. PA, USA: Lippincott Williams & Wilkins, 2004:1 423-1 432.
[71] PAWLIKSKOWRONSKA B. Relationships between acid-soluble thiol peptides and accumulated Pb in the green alga Stichococcus bacillaris [J]. Aquatic Toxicology, 2000, 50(3): 221-230.
[72] LIDSKY T I, SCHNEIDER J S. Lead neurotoxicity in children: basic mechanisms and clinical correlates [J]. Brain, 2003, 126(1):5-19.
[73] TIAN F W, ZHAI Q X, ZHAO J X, et al. Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice[J]. Biological trace element research, 2012, 150(1):264-271.
[74] ZANJANI S Y, ESKANDARI M R, KAMALI K, et al. The effect of probiotic bacteria (Lactobacillus acidophilus and Bifidobacterium lactis) on the accumulation of lead in rat brains [J]. Environmental Science and Pollution Research, 2016:1-6.
[75] DELCOUR J, FERAIN T, DEGHORAIN M, et al. The biosynthesis and functionality of the cell-wall of lactic acid bacteria [J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 1999, 76(1-4):159-184.
[76] 徐颖,李洁,贺丹丹,等. 两株乳酸菌对铅的吸附作用[J].食品与机械,2018,34(3):49-53.
[77] 赵维梅.环境中砷的来源及影响[J].科技资讯,2010,(8):146.
[78] NORMAN C N. Chemistry of arsenic, antimony and bismuth [M]. Blackie Academic & Professional, 1998:547-558.
[79] National Institute for Occupational Safety and Health (NIOSH). Arsine: Immediately Dangerous to Life and Health Concentrations (IDLH) [EB/OL]. 2014. https://www.cdc.gov/niosh/idlh/7784421.html.
[80] National Institute for Occupational Safety and Health (NIOSH). Methyl methacrylate: Immediately dangerous to life and health concentrations (IDLH) [EB/OL]. 2014. https://www.cdc.gov/niosh/idlh/80626.html.
[81] OPRESKO D M. Toxicity profiles[R].Risk Assessment Information System. TN, USA, 1992.
[82] 王瑛,陈苗苗,谭婷婷,等.海产品中的砷及其代谢机制的研究进展[J].现代食品科技,2014,30(11):256-265.
[83] PERGANTIS S A, FRANCESCONI K A, GOESSLER W, et al. Characterization of arsenosugars of biological origin using fast atom bombardment tandem mass spectrometry [J]. Analytical Chemistry, 1997, 69(23):4 931-4 937.
[84] GONG Z L, LU X F, MA M S, et al. Arsenic speciation analysis [J]. Talanta, 2002, 58(1): 77-96.
[85] DEVESA V, MARTINEZ A, SUNER M A, et al. Effect of cooking temperatures on chemical changes in species of organic arsenic in seafood[J]. Journal of Agricultural and Food Chemistry, 2001, 49(5):2 272-2 276.
[86] RATNAIKE R N. Acute and chronic arsenic toxicity [J]. Postgraduate Medical Journal, 2003, 79(933):391-396.
[87] LOGEMANN E, KRUTZFELDT B, POLLAK S. Suicidal administration of elemental arsenic [J]. Arch Kriminol, 1990, 185:80-88.
[88] NAUJOKAS M F, ANDERSON B E, AHSAN H, et al. The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem [J]. Environmental Health Perspectives, 2013, 121(3):295-302.
[89] 肖发怀,陈丽丽,刘丽娟,等.急性砷化物中毒的临床诊疗分析[J].世界最新医学信息文摘,2016,16(93):34-35.
[90] MAZUMDER D N. Chronic arsenic toxicity & human health [J]. Indian Journal of Medical Research,2008,128(4):436-447.
[91] GUO H, CHIANG H, HU H, et al. Arsenic in drinking water and incidence of urinary cancers[J]. Epidemiology, 1997, 8(5):545-550.
[92] CHIOU H G, HUANG W, SU C L, et al. Dose-response relationship between prevalence of cerebrovascular disease and ingested inorganic arsenic[J]. Stroke, 1997, 28(9):1 717-1 723.
[93] MAZUMDER D G, DASGUPTA B U. Chronic arsenic toxicity: Studies in West Bengal, India [J]. Kaohsiung Journal of Medical Sciences, 2011, 27(9):360-370.
[94] TSAI S, WANG T, KO Y. Mortality for certain diseases in areas with high levels of arsenic in drinking water [J]. Archives of Environmental Health, 1999, 54(3):186-193.
[95] ABERNATHY C O, LIU Y P, LONGFELLOW D G, et al. Arsenic: health effects, mechanisms of actions and research issues [J]. Environmental Health Perspectives, 1999, 107(7):593-597.
[96] CHEN L, LIANG R J, TAN T T, et al. Recent development in arsenic speciation and toxicity reduction of inorganic arsenic in food [J]. European Journal of BioMedical Research, 2016, 2(1):27-31/.
[97] MILLER W H, SCHIPPER H M, LEE J, et al. Mechanisms of action of arsenic trioxide [J]. Cancer Research, 2002, 62(14):3 893-3 903.
[98] CASTROCORONEL T, RAZO L M D, HUERTA M, et al. Arsenite exposure downregulates EAAT1/GLAST transporter expression in glial cells[J]. Toxicological sciences, 2011, 122(2):539-550.
[99] AMEYAR M, WISNIEWSKA M, WEITZMAN J B. A role for AP-1 in apoptosis: the case for and against [J]. Biochimie, 2003, 85(8):747-752.
[100] HOSSAIN E, OTA A, TAKAHASHI M, et al. Arsenic upregulates the expression of angiotensin II type I receptor in mouse aortic endothelial cells[J]. Toxicology Letters, 2013, 220(1):70-75.
[101] SASAKI A, OSHIMA Y, FUJIMURA A. An approach to elucidate potential mechanism of renal toxicity of arsenic trioxide [J]. Experimental Hematology, 2007, 35(2):252-262.
[102] ZHANG T C, SCHMITT M T, MUMFORD J L. Effects of arsenic on telomerase and telomeres in relation to cell proliferation and apoptosis in human keratinocytes and leukemia cells in vitro[J]. Carcinogenesis, 2003, 24(11): 1 811-1 817.
[103] HU Y, SU L, SNOW E T. Arsenic toxicity is enzyme specific and its effects on ligation are not caused by the direct inhibition of DNA repair enzymes [J]. Mutation Research-DNA Repair, 1998, 408(3):203-218.
[104] TCHOUNWOU P B, UDENSI U K, ISOKPEHI R D, et al. Arsenic and Cancer[A]. In Handbook of Arsenic Toxicology[M], Academic Press, 2015:533-555.
[105] TAWFIK D S, VIOLA R E. Arsenate replacing phosphate: Alternative life chemistries and ion promiscuity [J]. Biochemistry, 2011, 50(7): 1 128-1 134.
[106] 化学化工大辞典[M].北京:化学工业出版社,2003:2 032.
[107] HUGHES M F, RAZO L M D, KENYON E M. Dose-dependent effects on the disposition of monomethylarsonic acid and dimethylarsinic acid in the mouse after intravenous administration[J]. Journal of Toxicology and Environmental Health, Part A, 1998, 53:95-112.
[108] WANG T C, JAN K Y, WANG A S S, et al. Trivalent arsenicals induce lipid peroxidation, protein carbonylation, and oxidative DNA damage in human urothelial cells [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 615(1):75-86.
[109] 王鹤茹,刘燕舞.污染土壤生物修复的研究进展[J].安徽农业科学,2010,38(20):11 013-11 014;11 017.
[110] NAIDU R, SMITH E, OWENS G, et al. Managing arsenic in the environment from soil to human health[M]. Australia: Commonwealth Scientific and Industrial Research Organization Press, 2006:417-432.
[111] HENRY H, CREEN. Isolation and description of a bacterium causing oxidation of arsenite to arsenate in cattle-dipping baths [J]. Journal of the South African Veterinary Association, 1918, 34(6):593-599.
[112] VALENZUELA C, CAMPOS V L, YANEZ J, et al. Isolation of arsenite-oxidizing bacteria from arsenic-enriched sediments from Camarones River, Northern Chile[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 82(5):593-596.
[113] 吴锡,许丽英,张雪霞,等.缺氧条件下土壤砷的形态转化与环境行为研究[J].环境科学,2012,33(1):273-279.
[114] 余飞,万俊锋,赵雅光,等.硫酸盐还原菌SRB除砷的影响因素[J].环境工程学报,2016,10(7):3 898-3 904.
[115] JAIN A, SHARMA V K, MBUYA O S. Removal of arsenite by Fe (VI), Fe(VI)/Fe(III), and Fe(VI)/Al(III) salts: Effect of pH and anions[J]. Journal of Hazardous Materials. 2009, 169(1):339-344.
[116] 李素玉.环境微生物分类与检测技术[M].化学工业出版社,2005:147-148.
[117] TAKEUCHI M, KAWAHATA H, GUPTA L P, et al. Arsenic resistance and removal by marine and non-marine bacteria[J]. Journal of Biotechnology, 2007, 127(3):434-442.
[118] 刘玲.砷污染土壤中砷氧化菌的筛选[D].广州:广东工业大学,2007.
[119] 苏世鸣,曾希柏,蒋细良,等.高耐砷真菌的分离及其耐砷能力[J].应用生态学报,2010,21(12):3 225-3 230.
[120] HALTTUNEN T, FINELL M, SALMINEN S. Arsenic removal by native and chemically modified lactic acid bacteria [J]. International Journal of Food Microbiology, 2007, 120(1):173-178.
[121] SUN G X, WIELE T V D, ALAVA P, et al. Arsenic in cooked rice: effect of chemical, enzymatic and microbial processes on bioaccessibility and specia-tion in the human gastrointestinal tract [J]. Environmental Pollution, 2012, 162:241-246.
[122] BISANZ J, ENOS M, MWANGA J, et al. Randomized open-label pilot study of the influence of probiotics and the gut microbiome on toxic metal levels in tanzanian pregnant women and school children [J]. MBio, 2014, 5(5):e01580-14.
[123] SILVER S, PHUNG L T. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions [J]. Journal of Industrial Microbiology & Biotechnology, 2005, 32(11-12):587-605.
[124] ROSEN B P. Biochemistry of arsenic detoxification [J]. FEBS Letters, 2002, 529(1):86-92.
[125] CARLIN A, SHI W, DEY S, et al. The ars operon of Escherichia coli confers arsenical and antimonial resistance [J]. Journal of Bacteriology, 1995, 177(4):981-986.
[126] SILVER S, PHUNG L T. Bacterial heavy metal resistance: new surprises [J]. Annual Review of Microbiology, 1996, 50(1):753-789.
[127] FRANKENBERGER W T. Environmental chemistry of arsenic [M]. New York: Marcel Dekker, 2002:343-361.
[128] SILVER S, PHUNG L T. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic [J]. Applied and Environmental Microbiology, 2005, 71(2):599-608.
[129] THOMAS DJ, WATERS S B, STYBLO M. Elucidating the pathway for arsenic methylation [J]. Toxicology and Applied Pharmacology, 2004, 198(3):319-326.
[130] NRIAGU J O. Arsenic in the Environment, Part 1: Cycling and Characterization [M]. New York: Wiley, 1994:155-187.
[131] MUKHOPADHYAY R, ROSEN B P, PHUNG LT, et al. Microbial arsenic: from geocycles to genes and enzymes [J]. FEMS Microbiology Reviews, 2002, 26(3):311-325.
[132] BRANDES E A, GREENAWAY H T, STONE H E N. Ductility in chromium [J]. Nature, 1956, 178(4 533):587.
[133] COTTON F A. Chromium compound. In Multiple Bonds Between Metal Atoms [M].Oxford University Press, 2005:35-68.
[134] US National Institutes of Health. Chromium [EB/OL]. https://ods.od.nih.gov/factsheets/Chromium-HealthProfessional/. 2016.
[135] DAYAN A, PAINE A J. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: Review of the literature from 1985 to 2000[J].Human&Experimental Toxicology, 2001, 20(9): 439-451.
[136] KATZ S, SALEM H. The toxicology of chromium with respect to its chemical speciation: A review [J]. Journal of Applied Toxicology, 1993, 13(3):217-224.
[137] 高步先,夏耕田,张乃生.铬的生物学功能及其在动物体内的代谢[J].动物医学进展, 2002, 23(6): 49-51.
[138] 朱良印,郑林英.微量元素铬的吸收代谢与生化功能[J].中国畜牧兽医,2006,33(4):13-15.
[139] 王青,王娜.铬对人体与环境的影响及防治[J].微量元素与健康研究,2011,28(5):64-66.
[140] 中国营养学会编著.中国居民膳食营养素参考摄入量速查手册[M].2013版.北京:中国标准出版社.27.
[141] EASTMOND D A, MACGREGOR J T, SLESINSKI R S. Trivalent chromium: Assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement [J]. Critical Reviews in Toxicology, 2008, 38(3):173-190.
[142] RAJA N S, NAIR B U. Chromium (III) complexes inhibit transcription factors binding to DNA and associated gene expression [J]. Toxicology, 2008, 251(1):61-65.
[143] LI MM, ZHU JY, GAN M, et al. Characteristics of chromium coprecipitation mediated by Acidithiobacillus ferrooxidans DC [J]. Water Air Soil Pollution, 2014, 225(8):2 071.
[144] MUDHOO A, GARG V K, WANG S B. Removal of heavy metals by biosorption [J]. Environmental Chemistry Letters, 2011, 10(2):109-117.
[145] UPRETI R K, SHRIVASTAVA R, CHATURVEDI U C. Gut microflora & toxic metals:chromium as a model [J]. Indian Journal of Medical Research, 2004, 119(2):49-59.
[146] ZHITKOVICH A. Chromium in drinking water: Sources, metabolism, and cancer risks [J]. American Chemical Society, 2011, 24(10):1 617-1 629.
[147] DAS S, CHANDRA A L. Chromate reduction in Streptomyces [J]. Cellular and Molecular Life Sciences, 1990, 46(7):731-733.
[148] 马小珍,费保进,金楠,等.脱硫弧菌SRB7对重金属铬Cr(VI)的还原特性[J].微生物学通报,2009,36(9):1 324-1 328.
[149] GOULHEN F, GLOTER A, GUYOT F, et al. Cr(VI) detoxification by Desulfovibrio vulgaris strain Hildenborough: microbe-metal interactions studies[J]. Applied Microbiology and Biotechnology, 2006, 71(6):892- 897.
[150] OHTAKE H, FUJII E, TODA K. A survey of effective electron donors for reduction of toxic hexavalent chromium by Enterobacter cloacae (strain HO1) [J]. Journal of General and Applied Microbiology, 1990, 36(3):203-208.
[151] WANG P, TODA K, OHTAKE H, et al. Membrane-bound respiratory system of Enterobacter cloacae strain HO1 grown anaerobically with chromate[J]. FEMS Microbiol Letters, 1991, 78(1):11-16.
[152] MCLEAN J S, BEVERIDGE T J. Chromate reduction by a Pseudomonad Isolated from a Site contaminated with chromated copper arsenate [J]. Applied and Environmental Microbiology, 2001, 67(3):1 076-1 084.
[153] LIU Y G, XU W H, ZENG G M, Et al. Cr(VI) reduction by Bacillus sp. isolated from chromium landfill[J]. Process Biochemistry, 2006, 41(9):1 981-1 986.
[154] LATHA S, VINOTHINI G, DHANASEKARAN D. Chromium [Cr(VI)] biosorption property of the newly isolated actinobacterial probiont Streptomyces werraensis LD22[J]. BioTechniques, 2015, 5:423-432.
[155] UPRETI R K, SINHA V, MISHRA R, et al. In vitro development of resistance to arsenite and chromium-VI in Lactobacilli strains as perspective attenuation of gastrointestinal disorder [J]. Journal of Environment Biology, 2011, 32(3):325-332.
[156] KUMAR C S V S, RANI M U, REDDY D D, et al. Effect of probiotic strain Lactobacillus casei strain 17 AGAINST toxicity induced by chromium in female reproductive system of rats [J]. International Journal of Pharm and Bio Sciences, 2013, 4(1):1 119-1 130.
[157] KSHEMINSKA H, FEDOROVYCH D V, HONCHAR T, et al. Yeast tolerance to chromium depends on extracellular chromate reduction and Cr (III) chelation [J]. Food Technology and Biotechnology, 2008, 46(4):419-426.
[158] SHRIVASTAVA R, UPRETI R K, CHATURVEDI U C. Various cells of the immune system and intestine differ in their capacity to reduce hexavalent chromium [J]. FEMS Immunology and Medical Microbiology, 2003, 38(1):65-70.
[159] 孙嘉龙,李梅,曾德华.微生物对重金属的吸附、转化作用[J].贵州农业科学.2007, 35(5):147-150.
[160] 杨峰,尹华,彭辉,等.酵母融合菌对铬离子的吸附特性研究[J].环境化学,2007,26(3):318-322.
[161] 高小朋,张欠欠,许平,等.微生物还原Cr(VI)的研究进展[J].微生物学通报,2008,35(5):820-824.
[162] ELANGOVAN R, ABHIPSA S, ROHIT B, et al. Reduction of Cr(VI) by a Bacillus sp [J]. Biotechnology Letters, 2006, 28:247-252.
[163] DEFLORA S, WETTERHAN K E. Mechanisms of chromium metabolism and genotoxicity [J]. Life Chemical Report, 1989, 7:169-244.
[164] VIERA M, CURUTICHET G, DONATI E. A combined bacterial process for the reduction and immobilization of chromium [J]. International Biodeterioration & Biodegradation, 2003, 52(1):31-34.
[165] BOPP L H, EHRLICH H L. Chromate resistance and reduction in Pseudomonas fluorescens strain LB300 [J]. Archives of Microbiology, 1988, 150(5):426-431.
[166] GHARIEB M M, GADD G M. Role of glutathione in detoxification of metal (loid)s by Saccharomyces cerevisiae[J]. Biometals, 2004, 17(2):183-188.
[167] 邵雷.汞污染对食品质量的危害及对人体的伤害[J].现代食品,2016,1(2):36-37.
[168] 曾少军,曾凯超,杨来.中国汞污染治理的现状与策略研究.[J]中国人口、资源与环境,2014,24(S1):92-96.
[169] 苗利军.汞污染对人体的危害[J].农业工程,2013,3(3):83-84.
[170] KOT A, NAMIESNIK J. The role of speciation in analytical chemistry [J]. Trends in Analytical Chemistry, 2000, 19(2-3):69-79.
[171] 冯新斌,仇广乐,付学吾,等.环境汞污染[J].化学进展,2009,21(Z1):436-457.
[172] BERNARD S R, 苏鲁.甲基汞和无机汞的代谢模式[J].国外医学(卫生学分册).1985,(2):92-94.
[173] HOLMES A S, BLAXILL M F, HALEY B E. Reduced levels of mercury in first baby haircuts of autistic children[J]. International Journal of Toxicology, 2003, 22(4):277-285.
[174] 张燕萍,颜崇淮,沈晓明.环境中汞污染来源、人体暴露途径及其检测方法[J].广东微量元素科学, 2004,11(6):11-16.
[175] 李爱,陈雷,胡新武,等.甲基汞诱导海马神经细胞凋亡及其机制研究[J].环境与健康杂志,2008, 25(1):18-21;95.
[176] 金明华,姜春明,王欣,等.甲基汞对小鼠睾丸生殖细胞凋亡作用[J].中国公共卫生,2006,22(10): 1 225-1 226.
[177] 林雪梅,张海英,姜蓉,等.低剂量甲基汞促进鼠胚肠上皮细胞凋亡及相关机制的体内实验[J].第三军医大学学报,2007,29(5):410-412.
[178] 何继亮.用液体贮存法研究氯化甲基汞对人体淋巴细胞的遗传毒性效应[J].浙江医科大学学报,1994,6:265-268.
[179] GREENRUIZ C. Mercury (II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary [J]. Bioresource Technology, 2006, 97(15):1 907-1 911.
[180] KINOSHITA H, SOHMA Y, OHTAKE F, et al. Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein[J]. Research in Microbiology, 2013, 164(7):701-709.
[181] ROWLAND I R, DAVIESM J, EVANS J G. Tissue content of mercury in rats given methylmercuric chloride orally: Influence of intestinal flora [J]. Archives of Environmental Health: An International Journal, 2013, 35(3):155-160.
[182] KINOSHITA H, SOHMA Y, OHTAKE F, et al. Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein[J]. Research in Microbiology, 2013, 164(7): 701-709.
[183] BOONYODYING K, WATCHARASUPAT T, YOTPANYA W, et al. Factors affecting the binding of a recombinant heavy metal-binding domain (CXXC motif) protein to heavy metals[J]. Environment Asia, 2012, 5(2):70-75.
[184] 王欣卉,王颖,佐兆杭,等.酵母源金属硫蛋白对慢性汞中毒小鼠排汞及肝脏损伤修复作用[J].食品科学,2017,38(19):195-200.
[185] ROWLAND LR, ROBINSON R, DOHERTY R A. Effects of diet on mercury metabolism and excretion in mice given methylmercury: role of gut flora [J]. Archives of Environmental Health: An International Journal, 1984, 39(6):401-408.
[186] DUCROS V. Chromium metabolism: a literature review [J]. Biological Trace Element Research, 1992, 32:65-77.
[187] WELINDER H, LITTORIN M, GULLBERG B, et al. Elimination of chromium in urine after stainless steel welding[J]. Scandinavian Journal of Work, Environment & Health, 1983, 9(5):397-403.
文章导航

/