研究报告

山药蛋白肽对免疫能力低下小鼠的免疫调节作用

  • 樊乃境 ,
  • 王冬梅 ,
  • 高悦 ,
  • 郭亚男 ,
  • 程天赋 ,
  • 房庆喜 ,
  • 范志军
展开
  • 1(东北农业大学,黑龙江 哈尔滨,150030)
    2(黑龙江省北大荒绿色健康食品有限责任公司,黑龙江 佳木斯,154000)
硕士研究生(范志军副高级工程师为通讯作者,E-mail:1254026010@qq.com)

收稿日期: 2019-07-18

  网络出版日期: 2020-04-24

基金资助

黑龙江省应用技术研究与开发技术重大项目(GA17B002);山东省重点研发计划(医用食品专项计划)项目(2018YYSP026);山东省泰山产业领军人才工程项目(LJNY201607)

Immunomodulatory effects of the iron yam peptides on mice with immunocompromised

  • FAN Naijing ,
  • WANG Dongmei ,
  • GAO Yue ,
  • GUO Yanan ,
  • CHENG Tianfu ,
  • FANG Qingxi ,
  • FAN Zhijun
Expand
  • 1(Northeast Agricultural University, Harbin 150030, China)
    2(Heilongjiang Province Beidahuang Green Health Food Co.,Ltd., Jiamusi 150036, China)

Received date: 2019-07-18

  Online published: 2020-04-24

摘要

该文研究山药蛋白肽对免疫能力低下小鼠的免疫调节作用。试验采用环磷酰胺(cyclophospamide,CY)皮下注射构建免疫功能低下小鼠模型,通过口腔灌胃低、中、高不同剂量的山药蛋白肽,并与空白对照组、阴性对照组相比较,通过免疫器官、免疫细胞、免疫活性物质三方面探讨山药蛋白肽对免疫能力低下小鼠的免疫调控作用和作用机制。结果表明,山药蛋白肽含有极其丰富的疏水性氨基酸和碱性氨基酸;在小鼠免疫器官方面,CY构建免疫能力低下小鼠模型的免疫器官指数指标显著降低,脾脏发生明显的病理学变化,山药蛋白肽能促进免疫器官指数的提高,并且对脾脏病理学变化有显著改善作用;在小鼠免疫细胞方面, CY阴性对照组的乳酸脱氧酶(lactic dehydrogenase,LDH)和酸性磷酸酶(acid phosphatase,ACPase)活性、淋巴细胞增殖能力显著下降,山药蛋白肽能显著提高LDH、ACPase酶活性和淋巴细胞增殖能力;在小鼠免疫活性物质方面,CY阴性对照组的细胞因子(IL-1α、IL-6、IFN-γ)和免疫球蛋白(IgG、IgM)水平均显著低于正常组,山药蛋白肽能显著提升IL-1α、IL-6、IFN-γ水平和IgG、IgM水平,这表明山药蛋白肽能通过激活和保护免疫系统中的免疫器官、免疫细胞和免疫活性物质发挥免疫调节作用,进而增强机体的免疫防御能力。

本文引用格式

樊乃境 , 王冬梅 , 高悦 , 郭亚男 , 程天赋 , 房庆喜 , 范志军 . 山药蛋白肽对免疫能力低下小鼠的免疫调节作用[J]. 食品与发酵工业, 2020 , 46(6) : 101 -107 . DOI: 10.13995/j.cnki.11-1802/ts.021716

Abstract

The immunomodulatory effect of the iron yam peptides (IYPs) on immunocompromised mice and its mechanism of action were studied. In this study, cyclophosphamide (CY) was used to establish immunocompromised mouse model. The iron yam peptides were given orally by gavage and cyclophosphamide was injected subcutaneously every other day. The immunomodulatory effects of iron yam peptides on CY-immunized mice were investigated from the body's immune system. The results showed that IYPs contained abundant hydrophobic and essential amino acids. In the immune organs of mice, the immune organ index of CY-immunized mouse model was significantly decreased and the pathological changes of spleen occurred. The phaseolus vulgaris peptides also could promote the index of immune organs and pathology of spleen. The improvement was significant, which indicated that iron yam peptides could promote the development of immune organs in mice with immunocompromised. In mouse immune cells, LDH and ACPase activities, lymphocyte proliferation was significantly decreased in CY-immunized control group. The iron yam peptides significantly increased LDH, ACPase activity and lymphocyte proliferation. In the mouse immunosuppressive substances, the cytokines (IL-1α, IL-6, IFN-γ) and immunoglobulin (IgG, IgM) levels in the CY-immunized group were significantly lower than the normal group. The iron yam peptides significantly increased IL-1α, IL-6, IFN-γ levels and IgG, IgM levels. The iron yam peptides can exert immunomodulatory effects by activating and protecting immune organs, immune cells and immune active substances, thereby enhancing immune ability.

参考文献

[1] ZHAO T, YUN F, JING L, et al. Schisandra polysaccharide evokes immunomodulatory activity through TLR 4-mediated activation of macrophages [J]. International Journal of Biological Macromolecules, 2014, 65(5):33-40.
[2] TOOPCHAM T, MES J J, WICHERS H J, et al. Immunomodulatory activity of protein hydrolysates derived from Virgibacillus halodenitrificans, SK1-3-7 proteinase[J]. Food Chemistry, 2017, 224:320-328.
[3] NONGONIERMA A B, PAOLELLA S, MRDGIL P, et al. Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates[J]. Food Chemistry, 2018, 244:340-348.
[4] VANEGAS S M, MEYDANI M, BARNETT J B, et al. Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults[J]. American Journal of Clinical Nutrition, 2017, 105(3):635-650.
[5] NDIAYE F, VUONG T, DUARTE J, et al. Anti-oxidant, anti-inflammatory and immunomodulating properties of an enzymatic protein hydrolysate from yellow field pea seeds[J]. European Journal of Nutrition, 2012, 51(1):29-37.
[6] GAUTHIER S F, POULIOT Y, SAINTSAUVEUR D. Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins[J]. International Dairy Journal, 2006, 16(11):1 315-1 323.
[7] YANG R Y, ZHANG Z F, PEI X R, et al. Immunomodulatory effects of marine oligopeptide preparation from Chum Salmon (Oncorhynchus keta) in mice[J]. Food Chemistry, 2009, 113(2):464-470.
[8] HORIGUCHI N, HORIGUCHI H, SUZUKI Y. Effect of wheat gluten hydrolysate on the immune system in healthy human subjects[J]. Bioscience Biotechnology & Biochemistry, 2005, 69(12):2 445-2 449.
[9] KIM E K, KIM Y S, HWANG J W, et al. Purification of a novel nitric oxide inhibitory peptide derived from enzymatic hydrolysates of Mytilus coruscus[J]. Fish & Shellfish Immunology, 2013, 34(6):1 416-1 420.
[10] NAGAI T, SUZUKI N, TANOUE Y, et al. Antioxidant and antihypertensive activities of autolysate and enzymatic hydrolysates from yam (Dioscorea opposita Thunb.) ichyoimo tubers[J]. Journal of Food Agriculture & Environment, 2007, 5(3):64-68.
[11] YANG W, WANG Y, LI X, et al. Purification and structural characterization of Chinese yam polysaccharide and its activities[J]. Carbohydrate Polymers, 2015, 117:1 021-1 027.
[12] 叶春苗. 山药多糖提取、分离与纯化工艺研究[J]. 农业科技与装备, 2017, 282(12):30-32.
[13] 姬泓巍, 郭会芹, 张晶,等. 山药多糖提取分离工艺的研究[J]. 中国海洋大学学报(自然科学版), 2010, 40(7):89-92.
[14] 杨蕊, 韩涛, 王富贵, 等. 山药糖蛋白对α-葡萄糖苷酶的体外抑制作用研究[J]. 中国食品学报, 2012, 12(2):30-34.
[15] 李小强. 山药蛋白酶解多肽液及多肽酒制备工艺研究[D].武汉:湖北工业大学,2012:5-10.
[16] 饶铖乐. 怀山药多肽的制备及性质研究[D].武汉:湖北工业大学,2013:6-12.
[17] 朱玉端,李小强,董怀灿, 等. 双酶法酶解制备怀山药多肽的研究[J].食品工业,2012,33(9):80-82.
[18] 徐梦辰,丁轲,吕莹, 等.山药蛋白酶解条件及其响应面法的优化[J].中国粮油学报,2015,30(12):27-32.
[19] 陈文超, 钟森, 黄骏, 等. 鱼王浆对免疫功能低下模型小鼠体重及胸腺的影响[J]. 湖北中医药大学学报, 2011, 13(6):11-12.
[20] 高敏. 不同条件环磷酰胺建立小鼠免疫力低下模型的比较及偏最小二乘法(PLS)数学建模分析[J]. 中国比较医学杂志, 2015, 25(9):62-69.
[21] MAURER N, FENSKE D B, CULLIS P R. Developments in liposomal drug delivery systems[J]. Expert Opinion on Biological Therapy, 2001, 1(6):923-947.
[22] MENG F, XU P, WANG X, et al. Investigation on the immunomodulatory activities of Sarcodon imbricatus extracts in a cyclophosphamide (CTX)-induced immunosuppressanted mouse model[J]. Saudi Pharmaceutical Journal, 2017, 25(4):460-463.
[23] 帅学宏, 胡庭俊, 曾芸, 等. 山豆根多糖对免疫抑制模型小鼠免疫器官指数和自由基相关酶活性的影响[J]. 南京农业大学学报, 2009, 32(2):170-172.
[24] 王燕娟, 曹建平. 脾脏白髓结构特征以及维持其完整性的分子机制[J]. 国际医学寄生虫病杂志, 2011, 38(2):80-84.
[25] 李平乐. 非洲鸵鸟主要免疫器官的解剖组织学观察及生理功能的初步研究[D]. 郑州:河南农业大学, 2009:4-5.
[26] ROGATZKI M J, FERGUSON B S, GOODWIN M L, et al. Lactate is always the end product of glycolysis[J]. Frontiers in Neuroscience, 2015, 9:22.
[27] 张树华. 抑制糖酵解途径对胰腺癌细胞PANC-1生物学特性的影响及其机制的研究[D]. 武汉:华中科技大学, 2009:10-14.
[28] OU B, ABE K, CHEN H B, et al. Acid phosphatase localization in accumulated membranous organelles of optic nerve axons following acute elevation of intraocular pressure[J]. Japanese Journal of Ophthalmology, 1998, 42(5):373.
[29] 魏炜, 张洪渊, 石安静. 育珠蚌酸性磷酸酶活力与免疫反应关系的研究[J]. 水生生物学报, 2001, 25(4):413-415.
[30] 聂健, 王冀邯. 运动对大鼠脾脏T淋巴细胞增殖及T细胞亚群的影响研究[J]. 中国免疫学杂志, 2015(4):477-479.
[31] 张胤晟. 入核型IL-1α propiece分子调控机制研究[D]. 苏州:苏州大学,2016:1-10.
[32] 相慧. 番鸭白细胞介素-6基因的克隆与序列分析[D]. 福州:福建农林大学, 2011:8-12.
[33] 王骏俊. 鸡血清IgG的纯化及其单抗制备与鉴定[D]. 合肥:安徽农业大学, 2010:2-12.
[34] 张婧,章萍萍,祁培培, 等.人IgMμ链恒定区各肽段的基因合成原核表达及免疫原性分析[J].安徽医科大学学报,2013,48(9):995-1 000.
[35] KIEWIET M, FAAS M, VOS P D. Immunomodulatory Protein Hydrolysates and Their Application[J]. Nutrients, 2018, 10(7):904.
[36] AHN C B, CHO Y S, JE J Y. Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate[J]. Food Chemistry, 2015, 168:151-156.
[37] HE X Q, CAO W H, PAN G K, et al. Enzymatic hydrolysis optimization of Paphia undulata and lymphocyte proliferation activity of the isolated peptide fractions[J]. Journal of the Science of Food & Agriculture, 2015, 95(7):1 544-1 553.
[38] VO T S, RYU B M, KIM S K. Purification of novel anti-inflammatory peptides from enzymatic hydrolysate of the edible microalgal Spirulina maxima[J]. Journal of Functional Foods, 2013, 5(3):1 336-1 346.
文章导航

/