为提高鼠李糖乳杆菌在贮藏过程中的稳定性,以明胶、阿拉伯胶为壁材,采用复凝聚法制备鼠李糖乳杆菌微胶囊。研究以湿态微胶囊的包埋率为指标,考察pH、壁材浓度、转速和菌添加量对复凝聚法微胶囊制备的影响,在单因素试验的基础上进行正交试验,优化最佳工艺。将最优条件下的湿微胶囊进行喷雾干燥和真空冷冻干燥,并在不同水分活度和不同温度条件下研究了喷雾干燥和真空冷冻干燥鼠李糖乳杆菌微胶囊的储藏稳定性。结果表明,pH 3.75、壁材浓度1.5%、转速200 r/min、菌添加量109 CFU,此条件下制备的鼠李糖乳杆菌微胶囊包埋率最高,为93.21%;复凝聚法制备的鼠李糖乳杆菌湿微胶囊干燥后,每克真空冷冻干燥微胶囊的活菌数比喷雾干燥微胶囊高1.9个对数值;储藏时水分活度越低,温度越低,鼠李糖乳杆菌微胶囊的储藏性越好;与喷雾干燥微胶囊相比,储藏时真空冷冻干燥微胶囊在高水分活度下较稳定,且在不同水分活度、不同温度条件下的活性均高于喷雾干燥微胶囊。因此复凝聚法制备的鼠李糖乳杆菌微胶囊真空冷冻干燥后能更好的保护鼠李糖乳杆菌,延长其储藏期。
In order to improve the stability of Lactobacillus rhamnosus GG during storage, Lactobacillus rhamnosus GG was microcapsuled via complex coacervation with type B of gelatin and gum Arabic. The encapsulation efficiency of microcapsules was investigated under different processing conditions, including pH, the wall material concentration, stirring speed and number of viable bacteria added. The optimal conditions were obtained by orthogonal test based on single factor experiments using the embedding rate as the index. Meanwhile, this study also investigated the storage stability at different water activities and temperatures of Lactobacillus rhamnosus GG microcapsules using spray drying and vacuum freeze drying. The optimal conditions for preparing the microcapsules were pH=3.75; wall material concentration of 1.5%; stirring speed at 200 r/min; and the number of viable bacteria of 109 CFU. Under this optimal condition, the encapsulation efficiency was 93.21%. The viability of the microcapsules after vacuum freeze drying was 1.9 lg CFU/g higher than that of spray dried microcapsules. The storage stability studies demonstrated that the lower the water activity and the lower the temperature, the higher the cell survival. Considerably better survival was observed for vacuum freeze dried microcapsules compared to spray dried microcapsules at higher water activities, and the activity of vacuum freeze dried microcapsules was higher in any cases. The results indicated that vacuum freeze drying is an effective way to enhance storage stability for Lactobacillus rhamnosus GG microcapsules.
[1] FAO/WHO. Evaluation of health and nutritional properties of probiotics in food including powder milk and live lactic acid bacteria[R]. Argentina: FAO/WHO, 2001.
[2] QUIGLEY E M M. Prebiotics and probiotics in digestive health[J].Clinical Gastroenterology and Hepatology, 2019,17(2):333-344.
[3] ESPITIA P J P, BATISTA R A, AZAREDO H M C, et al. Probiotics and their potential applications in active edible films and coatings[J].Food Research International, 2016,90:42-52.
[4] TERPOU A, BEKATOROU A, KANELLAKI M, et al. Enhanced probiotic viability and aromatic profile of yogurts produced using wheat bran (Triticum aestivum) as cell immobilization carrier[J]. Process Biochemistry, 2017,55:1-10.
[5] 张灿, 吴彩娥, 范龚健, 等. 植物蛋白微胶囊对益生菌包埋的研究进展[J].食品工业科技, 2017,38(5):385-389.
[6] WU L, QIN W, HE Y, et al. Material distributions and functional structures in probiotic microcapsules[J].European Journal of Pharmaceutical Sciences, 2018,122:1-8.
[7] DE PRISCO A, MAURIELLO G. Probiotication of foods: A focus on microencapsulation tool[J].Trends in Food Science & Technology, 2016, 48:27-39.
[8] MARTIN M J, LARA-VILLOSLADA F, RUIZ M A, et al. Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects[J].Innovative Food Science & Emerging Technologies, 2015,27:15-25.
[9] 田文静, 朱莹丹, 岳林芳, 等. 益生菌微胶囊化研究现状[J].中国食品学报, 2016,16(8):186-194.
[10] RAMOS P E, ABRUNHOSA L, PINHEIRO A, et al. Probiotic-loaded microcapsule system for human in situ folate production: Encapsulation and system validation[J].Food Research International, 2016,90:25-32.
[11] AREPALLY D, GOSWAMI T K. Effect of inlet air temperature and gum Arabic concentration on encapsulation of probiotics by spray drying[J].LWT-Food Science and Technology, 2019,99:583-593.
[12] EGHBAL N, CHOUDHARY R. Complex coacervation: Encapsulation and controlled release of active agents in food systems[J]. LWT-Food Science and Technology, 2018,90:254-264.
[13] ERATTE D, DOWLING K, BARROW C J, et al. Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: A review[J].Trends in Food Science & Technology, 2018,71:121-131.
[14] TIMILSENA Y P, AKANBI T O, KHALID N, et al. Complex coacervation: Principles, mechanisms and applications in microencapsulation[J].International Journal of Biological Macromolecules, 2019,121:1 276-1 286.
[15] 贺红军, 李宜春, 张雪婷, 等. 微胶囊法提高益生菌抗逆性的研究[J].食品工业, 2017,38(2):188-193.
[16] DA SILVA T M, DE DEUS C, DE SOUZA FONSECA B, et al. The effect of enzymatic crosslinking on the viability of probiotic bacteria (Lactobacillus acidophilus) encapsulated by complex coacervation[J].Food Research International, 2019, 125:108 577.
[17] 朱晓丽, 顾相伶, 张志国, 等. 单凝聚与复凝聚法制备昆虫激素十二醇微胶囊及其释放行为[J].高分子学报, 2007(5):491-496.
[18] 郭阳, 包怡红, 赵楠. 复凝聚法制备松籽油微胶囊工艺优化及其氧化稳定性分析[J].食品科学, 2017, 38(18):229-236.
[19] 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准食品中水分的测定:GB 5009.3—2016 [S].北京:中国标准出版社,2016.
[20] 严维凌, 赵俊虹. 食品水分活度测量不确定度的评定方法[J].食品与机械, 2009, 25(6):117-120.
[21] BURGESS D J, CARLESS J E. Microelectrophoretic studies of gelatin and acacia for the prediction of complex coacervation[J]. Journal of Colloid & Interface Science, 1984, 98(1):1-8.
[22] 李瑾, 郑明学, 钱锐, 等. 影响复凝聚法制备明胶缓释微囊的因素探讨[J].中国畜牧兽医, 2009,36(6):207-209.
[23] ALBADRAN H A, CHATZIFRAGKOU A, KHUTORYANSKIY V V, et al. Stability of probiotic Lactobacillus plantarum in dry microcapsules under accelerated storage conditions[J].Food Research International, 2015, 74:208-216.
[24] 刘斌. 喷雾干燥过程中益生菌菌活变化与细胞膜损伤历程研究[D].苏州:苏州大学,2017.