基于革兰氏阳性菌以及金纳米粒子(gold nanoparticles, GNPs)对溶菌酶(lysozyme, LZM)的竞争结合实现了革兰氏阳性菌的广谱快速定量检测。在GNPs与LZM的孵育时间为15 min、孵育pH值为8.0、孵育温度为常温的条件下,通过紫外(ultraviolet-visible, UV-Vis)光谱以及激光光散射仪(dynamic light scattering, DLS)分别实现革兰氏阳性菌的定量检测。结果表明,相比UV-Vis光谱,DLS对粒子尺寸变化体现出了更高的灵敏度,LZM的添加量由UV-Vis法的40 μL(0.14 mg/mL)降低至DLS法的20 μL(0.14 mg/mL),定量限由1.26×107 CFU/mL降低至6.87×105 CFU/mL。与革兰氏阴性菌相比,2种定量方式均体现出对革兰氏阳性菌良好的选择性,均能实现真实样品中细菌的定量检测,其中回收率为83.0%~87.0%,相对标准偏差为2.4%~3.1%,且DLS定量法同样体现出更高的灵敏度。实验结果表明,在该竞争结合细菌检测体系中,DLS优于UV-Vis法,能够实现更灵敏的细菌检测。
A broad-spectrum quantitative detection method of Gram-positive bacteria was realized based on the competitive binding of Gram-positive bacteria and gold nanoparticles (GNPs) to lysozyme (LZM). LZM and GNPs were incubated under the optimized condition of 15 min, pH 8.0 and room temperature. The Gram-positive bacteria were quantitatively detected by ultraviolet-visible (UV-Vis) spectrum and laser light scattering (DLS). Compared with the UV-Vis spectrum, DLS showed higher sensitivity to particle size changes, and the addition of 0.14 mg/mL LZM solution could be reduced from 40 μL in UV-Vis method to 20 μL in DLS method when the signal intensity reached an acceptable range. Therefore, the limit of quantitation reduced from 1.26×107 CFU/mL to 6.87×105 CFU/mL. Compared with the Gram-negative bacteria, both quantitative methods showed good selectivity for Gram-positive bacteria, and both methods could realize the quantitative bacterial detection in real sample with the average recoveries of 83.0%-87.0% with the relative standard deviation of 2.4%-3.1%. The DLS quantification also showed higher sensitivity. Compared with the UV-Vis method, DLS showed the superiority in this competitive binding detection system, which could improve the sensitivity of detection.
[1] SCHELIN J, WALLIN-CARLQUIST N, COHN M T, et al. The formation of Staphylococcus aureus enterotoxin in food environments and advances in risk assessment[J]. Virulence, 2011, 2(6): 580-592.
[2] FU L L, LI J R. Microbial source tracking: A tool for identifying sources of microbial contamination in the food chain[J]. Critical Reviews in Food Science and Nutrition, 2014, 54(6): 699-707.
[3] WHO. Food safety[EB/OL]. WHO, 2017, https://www.who.int/news-room/fact-sheets/detail/food-safety.
[4] WANG H, ZHOU Y, JIANG X, et al. Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced raman scattering multifunctional chip[J]. Angewandte Chemie-International Edition, 2015, 54(17): 5 132-5 136.
[5] BOTARO B G, CORTINHAS C S, MARCO L V, et al. Detection and enumeration of Staphylococcus aureus from bovine milk samples by real-time polymerase chain reaction[J]. Journal of Dairy Science, 2013, 96(11): 6 955-6 964.
[6] KWON S J, LEE K B, SOLAKYILDIRIM K, et al. Signal amplification by Glyco-qPCR for ultrasensitive detection of carbohydrates: Applications in glycobiology[J]. Angewandte Chemie-International Edition, 2012, 51(47): 11 800-11 804.
[7] WU W, ZHAO S, MAO Y, et al. A sensitive lateral flow biosensor for Escherichia coli O157:H7 detection based on aptamer mediated strand displacement amplification[J]. Analytica Chimica Acta, 2015, 861: 62-68.
[8] BROSEL-OLIU S, FERREIRA R, URIA N, et al. Novel impedimetric aptasensor for label-free detection of Escherichia coli O157:H7[J]. Sensors and Actuators B: Chemical, 2018, 255: 2 988-2 995.
[9] JIANG Y, ZOU S, CAO X. A simple dendrimer-aptamer based microfluidic platform for E.coli O157:H7 detection and signal intensification by rolling circle amplification[J]. Sensors and Actuators B: Chemical, 2017, 251: 976-984.
[10] ZHU L, LI S, SHAO X, et al. Colorimetric detection and typing of E.coli lipopolysaccharides based on adual aptamer-functionalized gold nanoparticle probe[J]. Microchimica Acta, 2019, 186(2): 111.
[11] YU M, WANG H, FU F, et al. Dual-recognition forster resonance energy transfer based platform for one-step sensitive detection of pathogenic bacteria using fluorescent vancomycin-gold nanoclusters and aptamer-gold nanoparticles[J]. Analytical Chemistry, 2017, 89(7): 4 085-4 090.
[12] SINGH P, GUPTA R, CHOUDHARY M, et al. Drug and nanoparticle mediated rapid naked eye water test for pathogens detection[J]. Sensors and Actuator B-Chemical, 2018, 262: 603-610.
[13] YOU Q, ZHANG X, WU F G, et al. Colorimetric and test stripe-based assay of bacteria by using vancomycin-modified gold nanoparticles[J]. Sensors and Actuators B-Chemical, 2019, 281: 408-414.
[14] ZHANG L, SHI Y, CHEN C, et al. Rapid, visual detection of Klebsiella pneumoniae using magnetic nanoparticles and an horseradish peroxidase-probe based immunosensor[J]. Journal of Biomedical Nanotechnology, 2019, 15(5): 1 061-1 071.
[15] WANG M, YANG H, WU Y, et al. Fluorescent analysis of Staphylococcus aureus by using daptomycin and immunoglobulin G for dual sites affinity[J]. Spectrochimica acta(Part A), Molecular and Biomolecular Spectroscopy, 2019, 215: 340-344.
[16] CHATTOPADHYAY S, SABHARWAL P K, JAIN S, et al. Functionalized polymeric magnetic nanoparticle assisted SERS immunosensor for the sensitive detection of S. typhimurium[J]. Analytica Chimica Acta, 2019, 1067: 98-106.
[17] BLAKE C C F, KOENIG D F, MAIR G A, et al. Structure of hen egg-white lysozyme: A three-dimensional fourier synthesis at 2 resolution[J]. Nature, 1965, 206(4 986): 757-761.
[18] 杨曼利, 曹栋, 史苏佳. 化学法改性溶菌酶抑菌性及其结构研究[J]. 食品与发酵工业, 2014, 40(6): 22-26.
[19] LOPES N A, BARRETO PINILLA C M, BRANDELLI A. Antimicrobial activity of lysozyme-nisin co-encapsulated in liposomes coated with polysaccharides[J]. Food Hydrocolloids, 2019, 93: 1-9.
[20] XU F, LIU S, LIU Y, et al. Effectiveness of lysozyme coatings and 1-MCP treatments on storage and preservation of kiwifruit[J]. Food Chemistry, 2019, 288: 201-207.
[21] 范林林, 林楠, 冯叙桥, 等. 溶菌酶及其在食品工业中的应用[J]. 食品与发酵工业, 2015, 41(3): 248-253.
[22] MASSCHALCK B, MICHIELS C W. Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria[J]. Critical Reviews in Microbiology, 2003, 29(3): 191-214.
[23] PROCTOR V A, CUNNINGHAM F E. The chemistry of lysozyme and its use as a food preservative and a pharmaceutical[J]. Critical Reviews in Food Science and Nutrition, 1988, 26(4): 359-395.
[24] VOCADLO D J, DAVIES G J, LAINE R, et al. Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate[J]. Nature, 2001, 412(6 849): 835-838.
[25] 袁爱梦, 蔡珺珂, 李彤, 等. 金纳米基比色传感器法测定动物源食品中卡那霉素残留[J]. 食品与发酵工业, 2016, 42(12): 179-182.
[26] BASTU'S N G, COMENGE J, PUNTES V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: Size focusing versus ostwald ripening[J]. Langmuir, 2011, 27(17): 11 098-11 105.