为解决高温好氧堆肥过程中可用菌剂较少的问题,从完全腐熟的餐厨垃圾有机肥中筛选高效降解有机质的菌株。经过富集培养和分离纯化,实验获得了8株形态各异的单菌株。通过平板透明圈法测定各菌株的产酶能力,得出YB1、YB4-1和YB4-2对淀粉、纤维素、蛋白质及油脂具有更强的分解能力,结合各菌株对温度和盐度的耐受性,最终确定YB1、YB4-1和YB4-2为潜力菌株。经过分子生物学鉴定,确定3株菌株分别为枯草芽孢杆菌、巨大芽孢杆菌和地衣芽孢杆菌。将3株菌株等比例制作成复合菌剂用于餐厨垃圾堆肥实验,发现该复合菌剂不仅能明显缩短堆肥周期(约40%),而且将餐厨垃圾降解率提高了31%。该复合菌剂可用于餐厨垃圾处理工业,具有良好的应用前景和经济价值。
In order to solve the problem of fewer strains available in the process of high temperature aerobic composting, the strains which can degrade organic matter efficiently were screened from the fully decomposed organic fertilizer of kitchen waste. After enrichment, isolation and purification, eight strains with different morphology were obtained. The enzyme-producing ability of each strain was determined by the plate transparent circle method, and it was concluded that YB1, YB4-1 and YB4-2 had stronger ability to decompose starch, cellulose, protein and oil. Combined with the temperature and salinity tolerance of each strain, YB1, YB4-1 and YB4-2 were determined as potential strains. By molecular biological identification, these three strains were identified as Bacillus subtilis, Bacillus megaterium and Bacillus licheniformis, respectively. These three strains were made into compound bacteria for the kitchen waste composting experiment. The results showed that the compound bacteria not only significantly shortened the compost cycle (about 40%), but also improved the degradation rate of kitchen waste by 31%. The compound bacteria can be used in the kitchen waste treatment industry, and has a good application prospect and economic value.
[1] 尹亚琳.餐厨垃圾的处理技术[J].资源节约与环保,2018(6):106.
[2] 朱慧.餐厨垃圾及组分对几种常见微生物生长的影响[D].南京:南京大学,2019.
[3] 周营.餐厨垃圾好氧堆肥微生物强化及复混肥制备的研究[D].广州:华南理工大学,2018.
[4] 黄林丽,谢斌,陈立,等.公共餐厨垃圾饲料化利用的混合菌发酵工艺[J].食品与发酵工业,2019,45(24):148-152.
[5] 冯磊,高媛,寇宏丽,等.餐厨垃圾干发酵水解酸化机制及产气动力学[J].环境污染与防治,2016,38(9):62-67.
[6] 刘敬武.城市餐厨垃圾资源化、无害化、减量化处理研究[J].环境与发展,2018,30(6):240-241.
[7] 王静,陆万祥.餐厨垃圾资源化专利技术综述[J].河南科技,2017(16):58-59.
[8] 施军营,薛方亮,何清玉,等.城市餐厨垃圾前处理的工艺优化[J].环境工程学报,2017,11(10):5 658-5 662.
[9] 饶玲华,李军.餐厨垃圾资源化处理方案对比分析[J].环境科学与技术,2016,39(S2):237-240.
[10] 何侃侃,曾武,黄燕冰,等.餐厨垃圾生物处理技术研究进展[J].广东化工, 2018, 45(24):25-26.
[11] 高常卉,黄振兴,赵明星,等.餐厨垃圾厌氧干发酵产氢特性及其调控[J].环境工程学报,2018,12(6):1 843-1 852.
[12] 程亚莉,毕桂灿,沃德芳,等.国内外餐厨垃圾现状及其处理措施[J].新能源进展,2017,5(4):266-271.
[13] 陈立春,卞月红.南京餐厨垃圾特征、危害与主要处理方法[J].农业工程技术,2018,38(29):38-39.
[14] 郝晓地,周鹏,曹达啓.餐厨垃圾处置方式及其碳排放分析[J].环境工程学报,2017,11(2):673-682.
[15] 周东兴,王广栋,邬欣慧,等.腐熟堆肥中维素降解菌筛选鉴定及酶学特性研究[J].东北农业大学学报,2018,49(5):60-68.
[16] 张达余,凌培杰,周森林,等.易腐厨余垃圾好氧高温堆肥制作技术[J].现代农业科技,2019(5):164-165.
[17] 文斌,郭小林,傅祥超,等.三种菌剂在兔粪菌渣高温堆肥中的应用效果研究[J].草业与畜牧,2016(2):43-51.
[18] 张琴.两种不同通风方式下堆肥接种剂的作用效果研究[D].北京:中国农业大学,2007.
[19] 赵斌,方正,柯晓静.促腐菌剂在农业有机废弃物腐解中的应用研究进展[J].河南农业科学,2014,43(1):7-10.
[20] 勾长龙,高云航,刘淑霞,等.微生物菌剂对堆肥发酵影响的研究进展[J].湖北农业科学,2013,52(6):1 244-1 247.
[21] 王学奎.植物生理生化实验原理和技术[M].北京:高等教育出版社,2006.
[22] QB/T 1803—1993,工业酶制剂通用试验方法[S].北京:中国轻工业出版社,1993.
[23] 方华.绍兴黄酒麦曲中微生物的初步研究[D].无锡:江南大学,2006.
[24] 江慧芳,王雅琴,刘春国.三种脂肪酶活力测定方法的比较及改进[J].化学与生物工程,2007,24(8):72-75.
[25] BROWN I J,TZOULAKI I,CANDEIAS V,et al.Salt intakes around the world:Implications for public health[J].International journal of epidemiology,2009,38(3):791-813.
[26] LIU Nuo,WANG Quan,JIANG Jiangguo,et al.Effects of salt and oil concentrations on volatile fatty acid generation in food waste fermentation[J].Renewable Energy,2017,113:1 523-1 528.
[27] 王攀,李冰心,黄燕冰,等.含盐量对餐厨垃圾干式厌氧发酵的影响[J].环境污染与防治,2015,37(5):27-31.
[28] 任连海,黄燕冰,王攀.含盐量对餐厨垃圾堆肥理化特性变化规律的影响[J].重庆大学学报,2014,37(7):104-109.