前期通过高通量转录组测序对不同浓度盐胁迫下发菜的差异表达基因进行了分析,结果发现钾离子通道蛋白TrkA-N在 0.3 mol/L盐浓度下转录水平比无盐时明显下调。为更好研究该基因及其编码蛋白,通过分子生物学手段、以发菜基因组为模板,克隆钾通道蛋白编码基因TrkA-N序列,成功获得长度为696 bp的核酸序列。进行生物学信息分析结果表明,钾离子通道蛋白TrkA-N平均分子质量为31.41 kDa,理论等电点为5.82,该蛋白不含跨膜区,是亲水性蛋白。蛋白氨基酸序列中分别有10个Ser位点、6个Thr位点、2个Tyr位点,二级结构主要为α螺旋和β折叠。随后,将TrkA-N编码基因与诱导表达质粒pET28a进行重组并转化至大肠杆菌BL21(DE3)中进行表达,最佳表达条件为培养10 h后待菌液OD600值达到0.8时,添加终浓度为1 mmol/L 的诱导剂异丙基-β-D-硫代半乳糖苷(isopropyl β-D-1-thiogalactopyranoside,IPTG),继续诱导20 h,最终在大肠杆菌中成功表达出分子质量为31.41 kDa的蛋白。该研究为进一步阐明发菜响应盐胁迫的机制奠定一定的理论基础。
In previous experiments, high-throughput transcriptome sequencing was used to analyze the differentially expressed genes in Nostoc flagelliforme under salt stress of different concentrations. The results showed that the transcription level of potassium channel protein TrkA-N was significantly down-regulated at 0.3 mol /L salt concentration compared with that of the control group (without salt). In order to further study this gene and its coding protein, the TrkA-N sequence encoding the potassium channel protein was cloned by molecular biology methods using the genome of Nostoc flagelliforme as the template, and the nucleic acid sequence with a length of 696 bp was successfully obtained. By analyzing the biological information of the protein encoded by the nucleic acid sequence, the following results were obtained: the average molecular weight of potassium ion channel protein TrkA-N was 31.41 kDa, and the theoretical isoelectric point was 5.82. This protein did not contain transmembrane region and was a hydrophilic protein. There were 10 Ser residues, 6 Thr residues and 2 Tyr residues in the amino acid sequence of this protein, and the secondary structure of this protein was mainly α-helix and β-sheet. The TrkA-N coding gene was cloned into pET28a and transformed into E. coli BL21(DE3) for expression. The optimal expression condition was when OD600 reached 0.8 after 10 h of cultivation, adding 1 mmol/L of IPTG and induced for 20 h. Finally, the 31.41 kDa protein was successfully expressed in E. coli. This study provides theoretical basis to further clarify the mechanism of response to salt stress.
[1] 杨新芳,乔木,朱自安.近十年发菜的研究进展[J].中央民族大学学报(自然科学版),2010,19(3):16-20;25.
[2] 周娟. 干旱胁迫下发状念珠藻生理响应及耐旱相关基因的克隆与分析[D]. 银川:宁夏大学, 2016.
[3] YUE S J,JIA S R,YAO J,et al. Nutritional analysis of the wild and liquid suspension culturedNostoc flagelliforme and antitumor effects of the extracellular polysaccharides[J]. Advanced Meterials Research, 2011,345:177-182.
[4] 贺韵雅. 盐胁迫对发菜细胞生理生化特征的影响[D]. 济南:山东轻工业学院, 2012.
[5] 范华. 盐胁迫下发菜多糖代谢相关差异表达基因的克隆与原核表达[D]. 西安:陕西科技大学, 2017.
[6] 焦文冬. 发状念珠藻与集胞藻、小球藻的营养成分及在盐胁迫下Rubisco基因表达的比较[D]. 西安:陕西科技大学, 2016.
[7] 汪倩. DHA/EPA和HUFA对三疣梭子蟹营养品质的影响[D].上海:上海海洋大学, 2012.
[8] 李彤辉. 发菜细胞多糖耦联循环发酵研究[D]. 洛阳:河南科技大学, 2015.
[9] 陈雪峰,王贵春,刘宁,等. 盐胁迫发菜胞外多糖的抗氧化活性[J]. 陕西科技大学学报(自然科学版), 2015, 33(1): 122-125;135.
[10] 陈雪峰, 李一当. 发菜多糖清除自由基活性的研究[J]. 安徽农业科学, 2008,36(8): 3 088-3 089.
[11] 马明. 新时期内蒙古草原牧民居住空间环境建设模式研究[D]. 西安:西安建筑科技大学, 2013.
[12] 王贵春. 盐胁迫对发菜胞外多糖化学结构及抗氧化活性的影响[D]. 西安:陕西科技大学, 2015.
[13] 赵秀霞. 发菜盐胁迫转录组分析及胞外多糖合成基因的克隆与表达[D]. 西安:陕西科技大学, 2016.
[14] SHAKEELAHMED AWANⅠ. Identification of anti-bacterial chemicals from the seed coat of trachycarpus fortunei Ⅱ. Transcriptomic Analysis of Biosynthetic Pathway of Sesquiterpenoids in Atractylodes Lancea[D]. Wuhan:Huazhong Agricultural University, 2017.
[15] ZHANG B, NIE X, XIAO B, et al. Identification of tissue-specific genes in nasopharyngeal epithelial tissue and differentially expressed genes in nasopharyngeal carcinoma by suppression subtractive hybridization and cDNA microarray[J]. Genes Chromosomes Cancer, 2003, 38(1): 80-90.
[16] MEI Qiang, ZHANG Y Q, et al. Hierarchically clustering to 1,033 genes differentially expressed in mouse superior colliculus in the courses of optic nerve development and injury[J]. Cell Biochemistry & Biophysics, 2013, 67(2): 753-761.
[17] JIA S, YU H, LIN Y, et al. Characterization of extracellular polysaccharides from Nostoc flagelliforme cells in liquid suspension culture[J]. Biotechnology & Bioprocess Engineering, 2007, 12(3): 271-275.
[18] 郭晓玲. "Na+、K+—ATP酶"在糖酵解中的作用[J]. 达县师范高等专科学校学报, 2002, 12(2): 77-78;86.
[19] 路苗, 陈雪峰, 赵秀霞, 等. 盐胁迫对发菜胞外多糖结构及其理化性质的影响[J]. 食品与发酵工业, 2016, 42(03): 119-124.
[20] 张艳萍, 厚毅清, 裴怀弟, 等. 马铃薯X病毒的分子生物学方法检测探究[J]. 种子, 2011, 30(12): 75-77.
[21] HAN P P, GUO R J, SHEN S G, et al. Proteomic profiling of Nostoc flagelliforme reveals the common mechanism in promoting polysaccharide production by different light qualities[J]. Biochemical Engineering Journal, 2018, 132:68-78.
[22] 徐永洞. 昆虫抗菌肽枯草芽孢杆菌工程菌构建[D].南昌: 南昌大学, 2018.
[23] 韩培培, 贾士儒. 发菜细胞培养的研究进展[J]. 天津科技大学学报, 2016, 31(2): 1-5;12.
[24] 尹晓月. 发菜MAAs的结构及其合成调控的转录因子研究[D]. 武汉:华中师范大学, 2016.
[25] 李文靖. 耐高糖发菜细胞菌种选育及培养条件优化[D]; 济南:齐鲁工业大学, 2015.