分析与检测

在线反应-高效液相色谱联用分析pH值对柑橘汁环氧佛手柑素水合反应的影响

  • 李贵节 ,
  • 程玉娇 ,
  • 张群琳 ,
  • 周琦 ,
  • 谈安群 ,
  • 张腾辉 ,
  • 吴厚玖 ,
  • 赵晓春 ,
  • RUSSELL L ROUSEFF ,
  • 梁国鲁
展开
  • 1 (西南大学 柑桔研究所 国家柑桔工程技术研究中心,重庆,400712)
    2 (重庆市功能性食品协同创新中心,重庆,400067)
    3 (成都市华测检测技术有限公司,四川 成都,610041)
    4 (西南大学 园艺园林学院,重庆,400715)
博士,副教授(ROUSEFF教授和梁国鲁教授为共同通讯作者,E-mail:rrouseff@swu.edu.cn;lianggl@swu.edu.cn)。

收稿日期: 2019-07-29

  网络出版日期: 2020-03-13

基金资助

重庆市基础研究与前沿探索项目(cstc2019jcyj-bshX0104);国家柑桔工程技术研究中心开放课题(NCERC2019004);“千人计划”高层次外国专家项目(WQ20135000161);国家重点研发计划“新型果蔬汁加工关键技术及装备研发”(2017YFD0400701-3)

The effect of pH on epoxybergamottin hydration in citrus juices analyzed by online reaction-high performance liquid chromatography

  • LI Guijie ,
  • CHENG Yujiao ,
  • ZHANG Qunlin ,
  • ZHOU Qi ,
  • TAN Anqun ,
  • ZHANG Tenghui ,
  • WU Houjiu ,
  • ZHAO Xiaochun ,
  • RUSSELL L ROUSEFF ,
  • LIANG Guolu
Expand
  • 1 (Citrus Research Institute of Southwest University, National Citrus Engineering Research Center, Chongqing 400712, China)
    2 (Chongqing Collaborative Innovation Center for Functional Food, Chongqing 400067, China)
    3 (Chengdu Centre Testing International Group Co., Ltd., Chengdu 610041, China)
    4 (College of Horticulture and Landscape Architectrue, Southwest University, Chongqing 400715, China)

Received date: 2019-07-29

  Online published: 2020-03-13

摘要

该研究开发了一种基于HPLC自动进样系统的化学反应过程在线分析方法,以研究不同酸度的模拟柑橘汁中6’,7’-环氧佛手柑素(6’,7’-epoxybergamottin, 6’,7’-EB)的酸诱导反应产物和速率。编辑样品自动处理程序,使反应物在pH 2.0、3.5和5.0的25 ℃模拟果汁中充分反应,并优化色谱条件使反应物和主要产物完全分离,实现反应体系的周期性进样和分析;利用二极管阵列检测器和外标法对各物质进行定性和定量检测。6’,7’-EB在25 ℃酸催化下主要发生侧链环氧基开环水合反应,生成6’,7’-二羟佛手柑素,同时产生少量异欧前胡素,两反应均为一级反应;6’,7’-EB在pH 2.0和3.5条件下的半寿期分别为9.71和119.7 min,在pH 5.0时基本稳定。该方法实现了对6’,7’-EB水合反应速率的自动化在线分析,具有精度高和省时省力的特点,所得pH 3.5反应速率常数能较准确地预测葡萄柚汁中6’,7’-EB及其产物的浓度。

本文引用格式

李贵节 , 程玉娇 , 张群琳 , 周琦 , 谈安群 , 张腾辉 , 吴厚玖 , 赵晓春 , RUSSELL L ROUSEFF , 梁国鲁 . 在线反应-高效液相色谱联用分析pH值对柑橘汁环氧佛手柑素水合反应的影响[J]. 食品与发酵工业, 2020 , 46(3) : 242 -249 . DOI: 10.13995/j.cnki.11-1802/ts.021807

Abstract

An on-line analysis method determining chemical reaction process based on an HPLC automatic sampling system was developed to study the products and reaction rates of 6′,7′-epoxybergamottin (6′,7′-EB) acid-induced reaction in simulated citrus juices with different acidity. The automatic pretreatment of imitated juice was programmed to ensure complete reaction at 25 ℃ and pH 2.0, 3.5 and 5.0, respectively; chromatographic conditions were optimized to separate the reactant and main products fully. Therefore, periodic sampling and analysis of these compounds in the reaction system was realized. Qualitative and quantitative detection of each substance was carried out by a diode array detector using the external standard method. At 25 ℃ by acid catalysis, 6′,7′-EB mainly involved in side-chain epoxide ring-opening and hydration reactions to generate 6′,7′-dihydroxybergamottin, with a few amounts of isoimperatorin produced too; both reactions followed the first-order kinetics. At pH 2.0 and 3.5, 6′,7′-EB showed a half-life of 9.71 and 119.7 min, respectively, whereas at pH 5.0 it was almost stable. This developed method achieved the automatic on-line analysis of 6′,7′-EB reaction rate, exhibiting the characteristics of both high precision and time/effort saving. The obtained reaction rate constant at pH 3.5 could be used to accurately predict the concentration of 6′,7′-EB and its products in real grapefruit juice.

参考文献

[1] FREROT E, DECORZANT E. Quantification of total furocoumarins in citrus oils by HPLC coupled with UV, fluorescence, and mass detection[J]. Journal of Agricultural and Food Chemistry, 2004, 52(23): 6 879-6 886.
[2] PEROUTKA R, SCHULZOVA V, BOTEK P, et al. Analysis of furanocoumarins in vegetables (Apiaceae) and citrus fruits (Rutaceae)[J]. Journal of the Science of Food and Agriculture, 2010, 87(11): 2 152-2 163.
[3] DUGRAND-JUDEK A, OLRY A, HEHN A, et al. The distribution of coumarins and furanocoumarins in Citrus species closely matches Citrus phylogeny and reflects the organization of biosynthetic pathways[J]. PLoS ONE, 2015, 10(11)e0142757.
[4] WU T S, WU P L, TSANG Z J, et al. New constituents and antiplatelet aggregation and anti-HIV principles of Artemisia capillaris[J]. Bioorganic and Medicinal Chemistry, 2001, 9(1): 77-83.
[5] 敖平. 什姆干栓翅芹中具有抗免疫缺陷病毒活性的香豆素及呋喃香豆素衍生物[J]. 国外医学(中医中药分册), 2002(4): 231-232.
[6] ADAMS M, ETTL S, KUNERT O, et al. Antimycobacteria activity of geranylated furocoumarins from Tetradium daniellii[J]. Planta Medica, 2006, 72(12): 1 132-1 135.
[7] LIN H C, TSAI S H, CHEN C S, et al. Structure-activity relationship of coumarin derivatives on xanthine oxidase-inhibiting and free radical-scavenging activities[J]. Biochemical Pharmacology, 2008, 75(6): 1 416-1 425.
[8] APPENDINO G, BIANCHI F, BADER A, et al. Coumarins from Opopanax chironium. New dihydrofuranocoumarins and differential induction of apoptosis by imperatorin and heraclenin[J]. Journal of Natural Products, 2004, 67(4): 532-536.
[9] SRIKRISHNA D, GODUGU C, DUBEY P K. A Review on pharmacological properties of coumarins[J]. Mini-Reviews in Medicinal Chemistry, 2018, 18(2): 113-141.
[10] GIRENNAVAR B, POULOSE S M, JAYAPRAKASHA G K, et al. Furocoumarins from grapefruit juice and their effect on human CYP 3A4 and CYP 1B1 isoenzymes[J]. Bioorganic and Medicinal Chemistry, 2006, 14(8): 2 606-2 612.
[11] STRAUGHAN J L. Grapefruit-drug interactions[J]. Cardiovascular Journal of South Africa: Official Journal for Southern Africa Cardiac Society and South African Society of Cardiac Practitioners, 2007, 18(1): 39-40.
[12] DE CASTRO W V, MERTENS-TALCOTT S, RUBNER A, et al. Variation of flavonoids and furanocoumarins in grapefruit juices: A potential source of variability in grapefruit juice? drug interaction studies[J]. Journal of Agricultural and Food Chemistry, 2006, 54(1): 249-255.
[13] BAILEY D G, ARNOLD J M O, MUNOZ C, et al. Grapefruit juice-felodipine interaction: mechanism, predictability, and effect of naringin[J]. Clinical Pharmacology and Therapeutics, 1993, 53(6): 637-642.
[14] UESAWA Y, MOHRI K. Quantitative structure-activity relationship (QSAR) analysis of the inhibitory effects of furanocoumarin derivatives on cytochrome P450 3A activities[J]. Pharmazie, 2010, 65(1): 41-46.
[15] ROW E C, BROWN S A, STACHULSKI A V, et al. Design, synthesis and evaluation of furanocoumarin monomers as inhibitors of CYP3A4[J]. Organic and Biomolecular Chemistry, 2006, 4(8): 1 604-1 610.
[16] XU J, MA L L, JIANG D, et al. Content evaluation of 4 furanocoumarin monomers in various citrus germplasms[J]. Food Chemistry, 2015, 187: 75-81.
[17] CANCALON P F, BARROS S M, HAUN C, et al. Effect of maturity, processing, and storage on the furanocoumarin composition of grapefruit and grapefruit juice[J]. Journal of Food Science, 2011, 76(4): C543-C548.
[18] MANTHEY J A, BUSLIG B S. Distribution of furanocoumarins in grapefruit juice fractions[J]. Journal of Agricultural and Food Chemistry, 2005, 53(13): 5 158-5 163.
[19] LI G J, WU H J, WANG Y, et al. Determination of citrus juice coumarins, furanocoumarins and methoxylated flavones using solid phase extraction and HPLC with photodiode array and fluorescence detection[J]. Food Chemistry, 2019, 271(1): 29-38.
[20] 周婵,许家喜. 非对称环氧乙烷的区域选择性亲核开环反应[J]. 化学进展, 2011, 23(1): 165-180.
[21] 郭庆启,张娜,何娇,等. 蓝靛果汁花色苷热降解动力学的研究[J]. 食品与发酵工业, 2011, 37(9): 74-78.
[22] 尚远,卢立新,许文才. 橙汁饮料中维生素C的无氧分解动力学[J]. 食品工业科技, 2008(10): 120-122.
[23] 蒋海萍,廖丹葵,孙建华,等. 抗氧化肽HDHPVC和HEKVC的反应动力学及抗氧化能力评价方法[J]. 食品科学, 2014, 35(17): 109-113.
[24] 胡静,李巨秀. 采用牛血清白蛋白/果糖体系研究荧光性AGEs生成的动力学[J]. 食品科学, 2017, 38(1): 7-12.
[25] 卢永翎,肖留榜,夏秋琴,等. 精氨酸——还原糖体系中1,2-二羰基化合物的形成和抑制研究[J]. 食品与机械, 2018, 34(10): 1-7.
[26] 周梦舟,丁城,关亚飞,等. 原花青素抑制丙烯酰胺的动力学[J]. 食品科学, 2018, 39(3): 123-128.
[27] 常瑞,何江,罗先锟,等. 羟自由基与Neu5Gc抽氢反应的理论动力学研究[J]. 现代食品科技,2019,35(10):66-75.
[28] PELEG H, NAIM M, ZEHAVI U, et al. Pathways of 4-vinylguaiacol formation from ferulic acid in model solutions of orange juice[J]. Journal of Agricultural and Food Chemistry, 1992, 40(5): 764-767.
[29] 周琦,谈安群,易鑫,等. 基于柑橘汁多甲氧基黄酮特征成分鉴别橙汁中宽皮桔汁的方法[J]. 食品与发酵工业:,2019,45(17):227-233.
文章导航

/