研究报告

小米辣鲊辣椒发酵过程中风味物质及微生物多样性的变化

  • 尹小庆 ,
  • 汤艳燕 ,
  • 阚建全 ,
  • 武亚婷 ,
  • 武运 ,
  • 杜木英
展开
  • 1(西南大学 食品科学学院,重庆,400715)
    2(中匈食品科学合作研究中心,重庆,400715)
    3(新疆农业大学 食品科学与药学学院,新疆维吾尔自治区 乌鲁木齐,830052)
硕士研究生(杜木英副教授为通讯作者,E-mail:muyingdu@swu.edu.cn)

收稿日期: 2019-10-07

  网络出版日期: 2020-04-10

基金资助

中央高校基本科研业务费专项资金资助(XDJK2017B039);对口援疆科技合作项目,新疆辣椒低盐发酵品质提升技术综合示范(CSTC2017-shms-kjfp80053); 新疆维吾尔自治区重点科技专项,民族特色果蔬关键技术研究-新型发酵辣椒酱产业升级提质增效研究与应用(2016401001-2);重庆市农委调味品产业技术体系项目(2018[7]号)

Analysis of flavor components and microbial diversity of XiaomilaZhalajiao during fermentation

  • YIN Xiaoqing ,
  • TANG Yanyan ,
  • KAN Jianquan ,
  • WU Yating ,
  • WU Yun ,
  • DU Muying
Expand
  • 1(College of Food Science, Southwest University, Chongqing 400715, China)
    2(Chinese-Hungarian Cooperative Research Centre for Food Science, Southwest University, Chongqing 400715, China)
    3(College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China)

Received date: 2019-10-07

  Online published: 2020-04-10

摘要

对鲊辣椒发酵过程中的挥发性成分、有机酸、氨基酸和微生物多样性的变化进行分析。结果显示,在90 d的发酵过程中共检出66种挥发性风味物质、6种有机酸及18种氨基酸。其中醇类物质含量在发酵30 d时达最大值,酯、萜、醛及酸类物质在发酵45 d时达最大值,吡嗪和烷烃类在发酵60 d时达最大值。琥珀酸和乙酸含量先升高后降低,其余有机酸含量先增加后基本保持稳定。虽然氨基酸总量不断降低,但人体必需氨基酸由11.9%增加至46.21%。小米辣鲊辣椒在发酵中共鉴定出30个细菌属、36个真菌属,其中LactobacillusCandida为发酵过程中的优势菌群。Candida与27种化合物显著相关(p<0.05),Lactobacillus与47种挥发性成分显著相关(P<0.05),且与乙酸己酯、庚酸乙酯等7种特征香气成分相关性极显著(P<0.01)。为小米辣鲊辣椒风味品质的评价和微生物多样性的变化提供理论依据。

本文引用格式

尹小庆 , 汤艳燕 , 阚建全 , 武亚婷 , 武运 , 杜木英 . 小米辣鲊辣椒发酵过程中风味物质及微生物多样性的变化[J]. 食品与发酵工业, 2020 , 46(5) : 74 -82 . DOI: 10.13995/j.cnki.11-1802/ts.022469

Abstract

The content of volatile components, organic acids, amino acids and microbial diversity in the fermentation of Zhalajiao was analyzed. The results showed that 66 kinds of volatile flavor compounds, 6 kinds of organic acids and 18 kinds of amino acids were detected during the 90-day fermentation. Among them, alcohols reached the maximum contents at 30 d of fermentation, and then esters, terpenoids, aldehydes and acids reached the maximum at 45 d. Finally, pyrazines and alkanes reached the maximum contents at 60 d. The content of succinic acid and acetic acid increased first and then decreased, while the content of other organic acids increased first and then remained stable. Although the total amount of amino acids constantly decreased, the essential amino acid content increased from 11.9% to 46.21%. A total of 30 bacterial genus and 36 fungal genus were identified during the fermentation. Moreover, Lactobacillus and Candida were the dominant bacteria during the fermentation process. Candida was significantly correlated with 27 compounds (P<0.05). Lactobacillus was correlated with 47 volatile components (P<0.05), and significantly correlated with seven characteristic aroma components, including hexyl acetate, ethyl heptanoate and so on (P<0.01). The results will provide a theoretical basis for the evaluation of the flavor quality and microbial diversity of Xiaomila Zhalajiao during fermentation.

参考文献

[1] 刘子菱, 李影, 韩立杰, 等. 韩国传统辣椒酱的功能性[J]. 食品科技, 2014, 39(3): 254-260.
[2] XAVIER A A O, PEREZ-GALVEZ A. Peppers and chilies[J]. Encyclopedia of Food and Health, 2016, 301: 305.
[3] 王永华. 食品风味化学[M]. 北京: 中国轻工业出版社, 2015.
[4] PANG X N, HAN B Z, HUANG X N, et al. Effect of the environment microbiota on the flavour of light-flavour Baijiu during spontaneous fermentation[J]. Scientific Reports, 2018, 8(1): 3 396.
[5] XIE C, ZENG H, WANG C, et al. Volatile flavor components, microbiota and their correlations in different sufu, a Chinese fermented soybean food[J]. Journal of Applied Microbiology, 2018, 125(6): 1 761-1 773.
[6] 白娟, 张瑶, 汪雪瑞, 等.响应面法优化鲊辣椒的发酵工艺[J]. 中国酿造, 2018, 37(10): 106-110.
[7] 王巧碧, 王丹, 赵欠, 等. SDE和SPME法对鲊海椒发酵中香气组成的比较分析[J]. 食品科学, 2016, 37(4): 108-114.
[8] 尹小庆, 汤艳燕, 杜木英, 等. 两种鲊辣椒发酵过程中香气特征及其差异分析[J]. 食品与发酵工业, 2019,45(16): 266-274;285.
[9] 陈光静, 郑炯, 丁涌波, 等. 顶空-固相微萃取-气相色谱-质谱联用结合嗅闻法分析异味薏米的异味成分[J]. 食品与发酵工业, 2018, 44(1): 230-237.
[10] 赵欠, 葛平珍, 王丹, 等. 不同淀粉配料制备鲊海椒酸味形成及其酸味特性的研究[J]. 食品与发酵工业, 2016, 42(10): 134-141.
[11] WU R, YU M, LIU X, et al. Changes in flavour and microbial diversity during natural fermentation of suan-cai, a traditional food made in Northeast China[J]. International Journal of Food Microbiology, 2015, 211: 23-31.
[12] MIAO L, WANG S, LI B, et al. Effect of carbon source type on intracellular stored polymers during endogenous denitritation (ED) treating landfill leachate[J]. Water Research, 2016, 100: 405-412.
[13] 张伟建, 范文来, 徐岩, 等. 沂蒙老区浓香型白酒香气成分分析[J]. 食品与发酵工业, 2019, 45(10): 188-193.
[14] 韩江雪, 丁筑红, 李仲军, 等. 不同乳酸菌强化接种发酵辣椒挥发性风味成分分析[J]. 食品科学, 2012, 33(10): 179-183.
[15] 周俊良. 发酵辣椒制品优势菌群鉴别筛选及其载体研究[D]. 贵阳: 贵州大学, 2008.
[16] ZHAO L, LI Y, JIANG L, et al. Determination of fungal community diversity in fresh and traditional Chinese fermented pepper by pyrosequencing[J]. FEMS Microbiology Letters, 2016, 363(24): fnw273.
[17] 牛琛, 奚印慈, Takuya Yanagisawa, 等. 基于HS-SPME-GC/MS和感官分析沙拉酱对青椒风味的影响[J].山东农业大学学报(自然科学版), 2019, 50(4): 692-696.
[18] JEUN J, KIM S, CHO S Y, et al. Hypocholesterolemic effects of Lactobacillus plantarum KCTC3928 by increased bile acid excretion in C57BL/6 mice[J]. Nutrition, 2010, 26(3): 321-330.
[19] WANG Y, XU N, XI A, et al. Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet[J]. Applied Microbiology and Biotechnology, 2009, 84(2): 341-347.
[20] 斯波. 辣椒香味物质的提取分离及其应用[J]. 中国调味品, 2012, 37(6): 27-30.
[21] 李曦, 陈倩, 唐伟, 等. 苹果醋饮料中的有机酸分析[J]. 食品与发酵工业, 2017, 43(2): 220-225.
[22] 叶陵, 王晶晶, 王蓉蓉, 等. 剁辣椒发酵过程中菌群与有机酸变化规律分析[J]. 食品科学, 2018, 39(6): 116-121.
[23] XIONG T, LI J, LIANG F, et al. Effects of salt concentration on Chinese sauerkraut fermentation[J]. LWT-Food Science and Technology, 2016, 69: 169-174.
[24] 赵大云, 丁霄霖. 雪里蕻腌菜风味物质的研究(I)雪里蕻腌菜氨基酸及有机酸成分检测与分析[J]. 中国调味品, 2000, 12: 13-16.
[25] 周俊良. 发酵辣椒制品优势菌群鉴别筛选及其载体研究[D]. 贵阳: 贵州大学, 2008.
[26] 韩俊燕, 赵国忠, 赵建新, 等. 发酵辣椒细菌多样性的16S rDNA测序分析[J]. 中国食品学报, 2018, 18(5): 246-251.
[27] 刘丽娜. 辣椒表面微生物区系的研究[D]. 重庆: 西南大学, 2007.
文章导航

/