该文以液态发酵的虎奶菇(Pleurotus tuber-regium, PTR)菌丝体为原料,对PTR菌丝体细胞壁(PTR-MCW)的组分进行分析,并阐明细胞壁骨架结构。采用不同提取强度的溶剂分离MCW的可溶性成分,对各组分进行含量测定、化学成分分析及基本结构表征。结果表明, PTR-MCW主要由4部分组成:热水提多糖和蛋白质复合物的外层,常温碱提的杂多糖部分,热碱提的高度支化杂多糖部分和碱不溶性多糖-几丁质复合物部分,这4种组分在PTR-MCW中的比例为2.06:22.06:46.97:18.95。占主要组分的热碱提多糖经纯化后得到纯多糖MHA-I,单糖组成和甲基化分析表明其糖苷键类型包括T-木糖、T-鼠李糖、T-葡萄糖、1,3-葡萄糖、1,6-葡萄糖、1,4-葡萄糖、1,3,6-葡萄糖、1,4,6-葡萄糖、1,3,6-甘露糖,摩尔比为2.01:1.00:27.64:8.19:38.22:20.88:14.38:6.98:3.22,该多糖的分支度(degree of branching,DB)为0.45,FT-IR分析鉴定MHA-I中主要为β-糖苷键。SEC-MALLS分析表明,超支化杂多糖MHA-I的分子量为4.502×104g/mol,回转半径为33.2 nm。电镜结果显示,MHA-I为具有超支化结构的多糖,在干燥的粉末状态下呈现准球形结构。该研究成果为虎奶菇多糖的开发及活性研究提供一定的理论依据。
The edible mushroom Pleurotus tuber-regium (PTR) was fermented to get the mycelium for cell wall component and structure analysis. Several extracted solutions were applied for the isolation of cell wall components, which were then analyzed from aspects of content, chemical composition and structure features. The results indicated that the cell wall structure of PTR mycelium contained four main fractions: an outer fraction of polysaccharide and protein complex which could be extracted using boiling water, an alkali-extractable fraction of heteropolysaccharides (room temperature), a hot alkali-extractable fraction of hyper-branched heteropolysaccharides (80 ℃) and an alkali-insoluble fraction of glucan-chitin complex. The proportions of these four fractions from outer layer to inner layer in PTR cell wall material were calculated to be 2.06:22.06:46.97:18.95. The purified polysaccharide MHA-I, which was obtained from the main component of MHA, was elucidated by the monosaccharide composition and methylation analysis to be composed of T-Xylp, T-Rhap, T-Glcp, 1,3-Glcp, 1,6-Glcp, 1,4-Glcp, 1,3,6-Glcp, 1,4,6-Glcp, 1,3,6-Manp in the molar ratio of 2.01:1.00:27.64:8.19:38.22:20.88:14.38:6.98:3.22 with DB (degree of branching) value of 0.45, the β-glycoside bond in MHA-I was identified by FT-IR. SEC-MALLS analysis revealed that the hyper-branched heteropolysaccharide (MHA-I) had a Mw of 4.502 × 104 g/mol and R.M.S. radius of 33.2 nm. The results of SEM and TEM indicated that the molecular morphology of MHA-I is hyperbranched structure, which existed in torispherical particles in dried powders. The present research could provide a theoretical basis for development and activity of PTR polysaccharides.
[1] WU G H, HU T, LI Z Y, et al. In vitro antioxidant activities of the polysaccharides from Pleurotus tuber-regium (Fr.) Sing.[J]. Food Chemistry, 2014, 148: 351-356.
[2] 林芳能, 欧滨, 陈喜蓉, 等. 不同种源地虎奶菇菌种培养基筛选试验研究[J]. 热带林业, 2017, 45(4): 6-8.
[3] WONG K H, LAI C K M, CHEUNG P C K. Immunomodulatory activities of mushroom sclerotial polysaccharides[J]. Food Hydrocolloids, 2011, 25(2): 150-158.
[4] ZHANG M, ZHANG L, CHEUNG P C K, et al. Molecular weight and anti-tumor activity of the water-soluble polysaccharides isolated by hot water and ultrasonic treatment from the sclerotia and mycelia of Pleurotus tuber-regium[J]. Carbohydrate Polymers, 2004, 56(2): 123-128.
[5] CHEN L, XU W, LIN S, et al. Cell wall structure of mushroom sclerotium (Pleurotus tuber regium): Part 1. Fractionation and characterization of soluble cell wall polysaccharides[J]. Food Hydrocolloids, 2014, 36: 189-195.
[6] CHEN L, ZHANG B B, CHEN J, et al. Cell wall structure of mushroom sclerotium (Pleurotus tuber-regium): Part 2. Fine structure of a novel alkali-soluble hyper-branched cell wall polysaccharide[J]. Food Hydrocolloids, 2014, 38: 48-55.
[7] SAMROT A V, ANGALENE J L A, ROSHINI S M, et al. Purification, characterization and utilization of polysaccharide of Araucaria heterophylla gum for the synthesis of curcumin loaded nanocarrier[J]. International Journal of Biological Macromolecules, 2019, 140: 393-400.
[8] SLAVOV A, OGNYANOV M, VASILEVA I. Pectic polysaccharides extracted from pot marigold (Calendula officinalis) industrial waste[J]. Food Hydrocolloids, 2020, 101: 105 545.
[9] LIU C, CHEUNG P. Structure and immunomodulatory activity of microparticulate mushroom sclerotial β-glucan prepared from Polyporus rhinocerus[J]. Journal of Agricultural and Food Chemistry, 2019, 67(32): 9 070-9 078.
[10] CHEN L, CHEUNG P C K. Mushroom dietary fiber from the fruiting body of Pleurotus tuber-regium: Fractionation and structural elucidation of nondigestible cell wall components[J]. Journal of Agricultural and Food Chemistry, 2014, 62(13): 2 891-2 899.
[11] WANGPAIBOON K, PADUNGROS P, NAKAPONG S, et al. An α-1,6-and α-1,3-linked glucan produced by Leuconostoc citreum ABK-1 alternansucrase with nanoparticle and film-forming properties[J]. Scientific Reports, 2018, 8(1): 8 340-8 350.
[12] 田有秋, 贾金霞, 束旭, 等. 淡红侧耳子实体多糖的分离纯化及结构探析[J]. 食品与发酵工业, 2018, 44(12): 66-72.
[13] CHOUANA T, PIERRE G, VIAL C, et al. Structural characterization and rheological properties of a galactomannan from Astragalus gombo Bunge seeds harvested in Algerian Sahara[J]. Carbohydrate Polymers, 2017, 175: 387-394.
[14] HU T, HUANG Q, WONG K, et al. Structure, molecular conformation, and immunomodulatory activity of four polysaccharide fractions from Lignosus rhinocerotis sclerotia[J]. International Journal of Biological Macromolecules, 2017, 94: 423-430.
[15] CHEN L, YU C, MA Y, et al. Insights into the structural and physicochemical properties of small granular starches from two hydrophyte duckweeds, Spirodela oligorrhiza and Lemna minor[J]. Carbohydrate Research, 2016, 435: 208-214.
[16] CHEN L, CHENG W N, ZHANG B B, et al. Structural and thermal analysis of a hyper-branched exopolysaccharide produced by submerged fermentation of mushroom mycelium[J]. RSC Advances, 2016, 6(113): 112 260-112 268.
[17] 苏畅, 夏文水, 姚惠源. 氨基葡萄糖和乙酰氨基葡萄糖的测定方法[J]. 食品工业科技, 2003,24(6): 74-75.
[18] WASSER S P. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides[J]. Applied Microbiology and Biotechnology, 2002, 60(3): 258-274.
[19] 江琦, 娄在祥, 王正齐, 等. 蛹虫草虫草多糖的分离纯化、分子构象分析及抗氧化活性研究[J]. 食品与发酵工业, 2019, 45(1): 22-28.
[20] LATGÉ J. The cell wall: A carbohydrate armour for the fungal cell[J]. Molecular Microbiology, 2007, 66(2): 279-290.
[21] CCRC. https://www.ccrc.uga.edu/specdb/ms/pmaa/pframe.html. 2019-09-20.
[22] WANG F, WANG W, HUANG Y, et al. Characterization of a novel polysaccharide purified from a herb of Cynomorium songaricum Rupr.[J]. Food Hydrocolloids, 2015, 47: 79-86.
[23] SUN M, YIN C, GU Y, et al. Synthesis and characterization of hyperbranched poly (ester-amine) by Michael addition polymerization[J]. Designed Monomers and Polymers, 2017, 20(1): 458-467.
[24] WU Z, LI H, WANG Y, et al. Optimization extraction, structural features and antitumor activity of polysaccharides from Z. jujuba cv. Ruoqiangzao seeds[J]. International Journal of Biological Macromolecules, 2019, 135: 1 151-1 161.
[25] WANG J, ZHANG J, ZHAO B, et al. A comparison study on microwave-assisted extraction of Potentilla anserina L. polysaccharides with conventional method: Molecule weight and antioxidant activities evaluation[J]. Carbohydrate Polymers, 2010, 80(1): 84-93.
[26] GUO R, TIAN S, LI X, et al. Pectic polysaccharides from purple passion fruit peel: A comprehensive study in macromolecular and conformational characterizations[J]. Carbohydrate Polymers, 2020, 229: 115 406.
[27] JIA X, WANG C, BAI Y, et al. Sulfation of the extracellular polysaccharide produced by the king oyster culinary-medicinal mushroom, Pleurotus eryngii (Agaricomycetes), and its antioxidant properties in vitro[J]. International Journal of Medicinal Mushrooms, 2017, 19(4): 355-362.
[28] ISLAM M R, TUDRYN G, BUCINELL R, et al. Morphology and mechanics of fungal mycelium[J]. Scientific Reports, 2017, 7(1):1-12.