研究报告

“美早”甜樱桃褐腐病病原菌的分离及内生拮抗细菌的筛选鉴定

  • 郗良卿 ,
  • 张士凯 ,
  • 陈雨诗 ,
  • 周一宁 ,
  • 张启月 ,
  • 辛力 ,
  • 张倩 ,
  • 吴澎
展开
  • 1 (山东农业大学,山东 泰安,271000)
    2 (山东省果树研究所,山东 泰安,271000)
硕士研究生(张倩副研究员和吴澎副教授为共同通讯作者,E-mail:cherryzhang2006@126.com,13954847828@163.com)

收稿日期: 2020-01-29

  网络出版日期: 2020-05-20

基金资助

国家重点研发计划项目(2017YFD0401303);山东省果树研究所青年基金(2018KY08);山东省现代农业产业技术体系果品创新团队(SDAIT-06-13);泰安市科技发展计划(49557040-x);山东农业大学作物生物学国家重点实验室开放课题基金(2015KF14);山东省科技计划项目(J12LF03);山东省重点研发计划(2017GNC10101)

Isolation of ‘Mei Zao’ sweet cherry brown rot pathogens and identification of endogenous antagonistic bacteria

  • XI Liangqing ,
  • ZHANG Shikai ,
  • CHEN Yushi ,
  • ZHOU Yining ,
  • ZHANG Qiyue ,
  • XIN Li ,
  • ZHANG Qian ,
  • WU Peng
Expand
  • 1 (Shandong Agricultural University, Tai'an 271000, China)
    2 (Shandong Institute of Pomology, Tai'an 271000, China)

Received date: 2020-01-29

  Online published: 2020-05-20

摘要

为明确山东泰安地区“美早”甜樱桃褐腐病的主要病原菌,并进行内生拮抗细菌的筛选鉴定,采集当地具有褐腐病特征的“美早”甜樱桃进行病原菌分离,利用形态学和分子生物学技术鉴定,并将分离的病原菌菌株回接甜樱桃进行致病性验证;针对褐腐病原菌,从健康甜樱桃本身筛选优质拮抗菌株,开展生防研究。结果显示,导致“美早”甜樱桃褐腐病的病原菌为美澳型核果褐腐病菌(Monilinia fructicola),回接试验表明,与腐败“美早”甜樱桃自然发病特征一致;从健康甜樱桃本身筛选获得内生拮抗细菌X-16,经形态学、生理生化特征以及16S rDNA序列鉴定为特基拉芽孢杆菌(Bacillus tequilensis),抑制率达到(72.27±0.55)%,对拮抗菌X-16的菌悬液、发酵液和发酵上清液进行拮抗效果验证,发酵液和发酵上清液对褐腐病菌具有较好抑制效果,抑制率分别为(71.93±0.18)%和(67.14±0.43)%。结果表明,美澳型核果褐腐病菌为山东泰安地区“美早”甜樱桃褐腐病主要病原菌;该研究筛选出的内生拮抗细菌X-16抑菌效果显著,具有优质生防菌株的潜力。

本文引用格式

郗良卿 , 张士凯 , 陈雨诗 , 周一宁 , 张启月 , 辛力 , 张倩 , 吴澎 . “美早”甜樱桃褐腐病病原菌的分离及内生拮抗细菌的筛选鉴定[J]. 食品与发酵工业, 2020 , 46(8) : 85 -91 . DOI: 10.13995/j.cnki.11-1802/ts.023345

Abstract

To identify the main pathogens of sweet cherry brown rot in Tai’an, Shandong province, and to identify endogenous antagonistic bacteria, locally collected ‘Mei Zao’ sweet cherries with brown rot characteristics were used to isolate pathogens. The isolated pathogens were identified by morphology and molecular biology techniques, and the isolated pathogenic strains were returned to ‘Mei Zao’ sweet cherries for pathogenicity verification. Aiming at isolating brown rot pathogens, high-quality antagonistic strains were screened from healthy sweet cherries, and biocontrol studies were carried out. The results showed that the pathogen that caused the brown rot of ‘Mei Zao’ sweet cherry was Monilinia fructicola. The back-up test showed that it was consistent with the natural disease characteristics of the spoiled ‘Mei Zao’ sweet cherry. The endophytic antagonist X-16 was screened from healthy sweet cherry. It was identified as Bacillus tequilensis by morphology, physiological and biochemical characteristics and 16S rDNA sequence. The inhibition rate reached (72.27±0.55)%. The fermentation solution, fermentation broth and fermentation supernatant were used to verify the antagonism effect. The fermentation broth and fermentation supernatant had good inhibitory effects on brown rot pathogens, and the inhibition rates were (71.93±0.18)% and (67.14±0.43)%, respectively. Monilinia fructicola is the main pathogen of sweet cherry brown rot of ‘Mei Zao’ in Tai’an, Shandong province. The endogenous antagonistic bacteria X-16 screened in this study has significant antibacterial effect and has the potential of being a high-quality biocontrol strain.

参考文献

[1] IPPOUSHI K, SASANUMA M, OIKE H, et al. Absolute quantification of Pru av 2 in sweet cherry fruit by liquid chromatography/tandem mass spectrometry with the use of a stable isotope-labelled peptide[J]. Food Chemistry, 2016, 204:129-134.
[2] 于广伟, 王毅, 郁小森, 等. 氧化玉米淀粉涂膜对低温贮藏期间甜樱桃生理及品质的影响[J]. 食品科学, 2015,36(22):192-196.
[3] 赵珊, 贡汉生, 田亚晨, 等. 苯乳酸-海藻酸钠涂膜保鲜剂的制备及其在甜樱桃保鲜中的应用[J]. 食品科学, 2018,576(11):221-226.
[4] YOO K M, ALFARSI M, HYUNGJAE L, et al. Antiproliferative effects of cherry juice and wine in Chinese hamster lung fibroblast cells and their phenolic constituents and antioxidant activities.[J]. Food Chemistry, 2011, 123(3):734-740.
[5] YILMAZ K U,ERCISLI S,ZENGIN Y, et al. Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties[J]. Food Chemistry, 2009, 114(2):408-412.
[6] 孙小渊,胡文忠,刘程惠, 等. 甜樱桃采后病害、贮藏期间品质变化及其防腐保鲜技术[J]. 食品工业科技,2019,40(5):338-342.
[7] 张立新, 陈嘉, 冯志宏, 等. 樱桃保鲜纸和高效乙烯去除剂对甜樱桃低温贮藏品质和褐变控制的影响[J]. 食品科学, 2016, 37(6):226-230.
[8] 李玉涛. 临沂甜樱桃生产存在问题与对策[J]. 落叶果树, 2019,51(4):54-56.
[9] 杜小琴. 植物精油对甜樱桃采后病原真菌的抑制作用及其贮藏效果研究[D]. 雅安:四川农业大学, 2016.
[10] ABATA L K, PAZ I A, VIERA W, et al. First report of alternaria rot caused by alternaria alternata on peach in ecuador[J].Plant Disease,2016,100(11):2 323.
[11] LI G J, ZHU S H, WU W X, et al. Exogenous nitric oxide induces disease resistance against Monilinia fructicola through activating the phenylpropanoid pathway in peach fruit[J].Journal of the Science of Food and Agriculture.2017,97(9):3 030-3 038.
[12] GAO H Y, XU X X, DAI Y W, et al. Isolation, identification and characterization of Bacillus subtilis CF-3, a bacterium from fermented bean curd for controlling postharvest diseases of peach fruit[J].Food Science and Technology Research,2016,22(3):377-385.
[13] 田亚晨, 贡汉生, 赵珊, 等. 烟台地区引起甜樱桃采后腐烂霉菌的分离鉴定[J]. 食品科学,2017,38(22):28-33.
[14] 杜小琴, 何靖柳, 秦文, 等. 甜樱桃果实采后病原菌及植物精油对其抑制效果研究进展[J]. 食品工业科技,2015,36(21): 368-371.
[15] 倪世杰. 不同冷藏保鲜处理对甜樱桃贮藏防腐效果研究[D]. 泰安:山东农业大学,2018.
[16] 李芳东,王玉霞,张福兴,等.优质丰产“美早”甜樱桃园土壤和叶片养分状况分析[J].山东农业科学,2018,50(8):96-99.
[17] 李雯霞,于司达,诸葛斌,等.芍药花提取物对果蔬腐败菌的抑菌活性及其在樱桃番茄保鲜中的应用[J].食品与发酵工业,2018,44(2):228-232.
[18] 孙小渊, 胡文忠, 刘程惠, 等. 甜樱桃采后病害、贮藏期间品质变化及其防腐保鲜技术[J]. 食品工业科技,2019,40(5):338-342.
[19] PEPIJN S, PRASNEE T. Agricultural pesticides and land use intensification in high, middle and low income countries[J].Food Policy,2012,37(6):616-626.
[20] HOSSIAN M I, SADEKUZZAMAN M, HA S D. Probiotics as potential alternative biocontrol agents in the agriculture and food industries: A review[J].Food Reserach International, 2017:63-73.
[21] ZHANG Zhanquan, CHEN Jian, LI Boqiang, et al. Influence of oxidative stress on biocontrol activity of cryptococcus laurentii against blue mold on peach fruit[J]. Frontiers in Microbiology, 2017(8): 151.
[22] LI X, ZHANG Y, WEI Z, et al. Antifungal activity of isolated Bacillus amyloliquefaciens SYBC H47 for the biocontrol of peach gummosis[J]. PLOS ONE, 2016, 11(9):e0162 125.
[23] GOTOR V A, TEIXIDO N, CASALS C, et al. Biological control of brown rot in stone fruit using Bacillus amyloliquefaciens CPA-8 under field conditions[J]. Crop Protection, 2017:72-80.
[24] 王燕, 王春伟, 王琳, 等. 甜瓜镰刀菌果腐病新病原菌Fusarium incarnatum的鉴定及生物学特性[J]. 园艺学报, 2019, 46(3):529-539.
[25] 于海博, 毕馨月, 夏博, 等. 辽宁西瓜和甜瓜细菌性果斑病的病原鉴定[J]. 沈阳农业大学学报, 2019, 50(3):345-350.
[26] 顾红杰, 郭利军, 赵亚, 等. 菠萝蜜炭疽病病原菌的形态学与多基因分子系统学鉴定[J]. 分子植物育种, 2019,17(5):1 487-1 492.
[27] ZHU Y Y, YU J, BRCHT J K, et al. Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage[J]. Food Chemistry, 2016, 190:537-543.
[28] 王正文,黄胜先,金义兰,等.黔东南有机蓝莓园病虫害发生情况调查[J].安徽农业科学,2016,44(1):206-210.
[29] 孟掉琴, 吴霞, 岳田利, 等. 混菌发酵苹果浊汁的益生菌筛选及其发酵动力学模型构建[J]. 食品科学, 2019,40(12):153-159.
[30] 蔡妙英,东秀珠.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
[31] LI Qian, WU Lei, HAO Jianjun, et al. Biofumigation on post-harvest diseases of fruits using a new volatile-producing fungus of Ceratocystis fimbriata[J]. PLOS ONE, 2015, 10(7):e0132009.
[32] MENG J H, COX K D, GUIDO S, et al. Monilinia species causing brown rot of peach in China[J]. PLoS ONE, 2011, 6(9):e24 990.
[33] 尹良芬.中国核果/仁果类果树褐腐病菌种群结果及Cty b基因的遗传进化研究[D].武汉:华中农业大学,2015.
[34] 周芳.陕西省褐腐病菌种群结构及致病性研究[D].晋中:山西农业大学,2015.
[35] 谢洁,任慧爽,唐翠明,等.一株桑树内生细菌的鉴定和对桑椹核地杖菌的拮抗作用[J].蚕业科学,2015,41(5):815-824.
[36] GHOLAMI M, KHAKVAR R, ALIASGARZAD N. Application of endophytic bacteria for controlling anthracnose disease (Colletotrichum lindemuthianum) on bean plants[J]. Scripted HTML Pflanzenschutz, 2013, 46 (15):1 831-1 838.
[37] 黄胜先,秦晓胶,谌金吾,等.黔东南地区蓝莓病虫害绿色防治技术[J]. 现代农业科技,2017(10):123-124;126.
[38] 申建芳,李子桀,蒙春燕,等.马铃薯黄萎病生防细菌的筛选与鉴定[J]. 北方农业学报,2018,46(1):81-84.
[39] SINGH A K, SHARMA P. Disinfectant-like activity of lipopeptide biosurfactant produced by Bacillus tequilensis strain SDS21[J]. Colloids and Surfaces B: Biointerfaces,2020,185:110 514.
文章导航

/