为改善纤维素对面团品质的不利影响,将薯渣纤维素(sweet potato residue cellulose, SPRC)进行超微粉碎,并与小麦粉重组制备面团,研究超微粉碎薯渣纤维(ultrafine pulverized sweet potato residue cellulose, UP-SPRC)添加量(质量分数,0%、5%、7%、9%、11%)对面团糊化特性、热机械学性能、拉伸特性以及动态流变学特性的影响。结果表明,与小麦面团相比,UP-SPRC重组面团的品质变差;但与添加5%的普通薯渣纤维 (common powdered sweet potato residue cellulose, CP-SPRC)相比,不同添加量UP-SPRC重组面团的峰值黏度、谷值黏度,最终黏度、衰减值及回生值更低,面团稳定时间更长。同时,添加量为5%和7%的UP-SPRC重组面团,其吸水率和弱化度小于CP-SPRC重组面团,且表现出更好的黏弹性。另外,相同添加量(5%)时,UP-SPRC 对重组面团拉伸力和拉伸距离的影响比CP-SPRC更小。说明超微粉碎不仅可以提高SPRC的用量,还能降低SPRC对面团流变品质的不利影响。
In order to improve the effects of cellulose on dough quality, sweet potato residue cellulose (SPRC) was ultra-pulverized and recombined with wheat flour to prepare reconstituted dough. Meanwhile, the effects of different ultrafine pulverized sweet potato residue cellulose (UP-SPRC) addition (0%, 5%, 7%, 9%, 11%) on the pasting, thermomechanical, tensile and dynamic rheological properties of doughs were investigated. The results showed that compared with wheat dough, UP-SPRC reconstituted dough exhibited worse qualities. However, compared with reconstituted doughs made with 5% common powdered sweet potato residue cellulose (CP-SPRC), reconstituted doughs made with UP-SPRC had lower peak viscosity, trough viscosity, final viscosity, decay value and setback value, but it showed longer dough stabilization time. Besides, reconstituted doughs made with 5% and 7% UP-SPRC showed lower water absorption, weakening degree, and better viscoelasticity than reconstituted doughs made with CP-SPRC. Moreover, the effect of 5% UP-SPRC on the tensile force and distance of reconstituted doughs was weaker than that of 5% CP-SPRC. These results indicated that ultrafine pulverization could not only increase the amount of SPRC, but also reduce the adverse effect of SPRC on dough rheological quality.
[1] LIU N, MA S, LI L, et al. Study on the effect of wheat bran dietary fiber on the rheological properties of dough[J]. Grain & Oil Science and Technology, 2019, 2(1): 1-5.
[2] DONG J, MU T H, SUN H N. Sweet potato and potato residual flours as potential nutritional and healthy food material[J]. Journal of Integrative Agriculture, 2017, 16(11): 2 632-2 645.
[3] YAN J, YU J C. Effects of twin-screw extrusion on soluble dietary fibre and physicochemical properties of soybean residue[J]. Food Chemistry, 2013, 138(2-3): 884-889.
[4] YU G Y, BEI J, ZHAO J, et al. Modification of carrot (Daucus carota Linn. var. Sativa Hoffm.) pomace insoluble dietary fiber with complex enzyme method, ultrafine comminution, and high hydrostatic pressure[J]. Food chemistry, 2018, 257(15): 333-340.
[5] LI Y, XIONG M Z, YIN C L, et al. Modification of insoluble dietary fiber from sweet potato residue with ultra high pressure processing technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(19):270-278.
[6] MENG M M, MU T H. Modification of deoiled cumin dietary fiber with laccase and cellulase under high hydrostatic pressure[J]. Carbohydrate Polymers, 2016, 136(20): 87-94.
[7] 赵仕婷, 木泰华, 郭亚姿, 等. 两种超微粉碎方法对甘薯膳食纤维物化功能特性影响的比较研究[J]. 食品工业科技, 2014, 35(15): 101-106.
[8] ZHANG J, LI M Q, LI C R, et al. Effect of wheat bran insoluble dietary fiber with different particle size on the texture properties, protein secondary structure and microstructure of noodles[J]. Grain & Oil Science and Technology, 2019,2(4):97-102.
[9] 苏玉. 蒸汽爆破-超微粉碎技术对米糠膳食纤维的改性及功能性质的研究[D]. 长沙:中南林业科技大学, 2019: 1.
[10] LIU C M, LIANG R H, DAI T T, et al. Effect of dynamic high pressure microfluidization modified insoluble dietary fiber on gelatinization and rheology of rice starch[J]. Food Hydrocolloids, 2016, 57: 55-61.
[11] 桂余. 不同粒度甘薯渣纤维素生理功能性质的研究[D]. 重庆:西南大学, 2014: 1.
[12] 梅新, 木泰华, 陈学玲, 等. 超微粉碎对甘薯膳食纤维成分及物化特性影响[J]. 重庆:中国粮油学报, 2014, 29(2): 76-81.
[13] KAZUNORI T, MENG MEI MA, FREDRICK O O. Sweet potato[M]. Kagoshima: Academic Press, 2019.
[14] LU H J, GUI Y, ZHENG L H, et al. Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue[J].Food Research International, 2013, 50(1): 121-128.
[15] HAN W, MA S, LI L, et al. Rheological properties of gluten and gluten-starch model doughs containing wheat bran dietary fibre[J]. International Journal of Food Science & Technology, 2018, 53(12): 2 650-2 656.
[16] ZHANG D Q, MU T H, SUN H N. Comparative study of the effect of starches from five different sources on the rheological properties of gluten-free model doughs[J]. Carbohydrate Polymers, 2017, 176(15): 345-355.
[17] 王玉颜, 刘海波, 杨溶, 等. 淀粉种类对重组粉面团的流变学特性的影响[J]. 食品与发酵工业, 2019, 45(3): 112-112.
[18] 曹媛媛. 甘薯膳食纤维的制备及其物化特性的研究[D]. 乌鲁木齐:新疆农业大学, 2007: 50.
[19] RAGHAVENDRA S,RASTOGI N,RAGHAVARAOK S M S, et al. Dietary fiber from coconut residue: effects of different treatments and particle size on the hydration properties[J]. European Food Research and Technology,2004,218(6): 563-567.
[20] BOITA E R F, ORO T, BRESSIANI J, et al. Rheological properties of wheat flour dough and pan bread with wheat bran[J]. Journal of Cereal Science, 2016, 71: 177-182.
[21] 段娇娇, 覃小丽, 金剑波, 等. 粉碎对谷物主要成分及面团品质的影响[J]. 食品与发酵工业, 2019, 45(11): 274-279.
[22] NAVICKIS L L, ANDERSON A R, BAGLEY B E, et al. Visco-elastic properties of wheat flour doughs:Variation of dynamic moduli with water and protein content[J]. J Texture Study, 1982,13(2): 249-264.
[23] 刘兴丽, 赵双丽, 靳艳军, 等. 挤压膨化紫薯粉对小麦面团糊化特性和热机械学特性的影响[J]. 食品科学, 2019, 40(15):106-111.
[24] XU F, HU H HAI, LIU Q N, et al. Rheological and microstructural properties of wheat flour dough systems added with potato granules[J]. International Journal of Food Properties, 2017, 20(S1): 145-157.
[25] MARIO J, KATHARINA M, THOMAS B. Starch-gluten interactions during gelatinization and its functionality in dough like model systems[J]. Food Hydrocolloids, 2016, 54: 196-201.
[26] LAPCˇÍKOVÓ B, BUREOVÓ I, LAPÍK L, et al. Impact of particle size on wheat dough and bread characteristics[J]. Food Chemistry, 2019, 297(1):1-7.