·研究报告·

新疆哈萨克族风干肉中产蛋白酶乳酸菌的筛选及酶学特性研究

  • 李丹阳 ,
  • 李宇辉 ,
  • 高云云 ,
  • 闫艺 ,
  • 王俊钢 ,
  • 卢士玲
展开
  • 1(石河子大学 食品学院,新疆 石河子,832000)
    2(新疆农垦科学院农产品加工研究所,新疆 石河子,832000)
    3(新疆农垦科学院农产品加工重点实验室,新疆 石河子,832000)
硕士研究生 (卢士玲教授和王俊钢副研究员为共同通讯作者,E-mail: lushiling_76@163.com;wjgang728@126.com)

收稿日期: 2020-01-17

  网络出版日期: 2020-06-11

基金资助

国家自然科学基金地区科学基金(31860437);新疆生产建设兵团中青年领军人才项目(2020CB024)

Screening of protease-producing lactic acid bacteria from Xinjiang Kazakhair-dried meat and their enzymatic characteristics

  • LI Danyang ,
  • LI Yuhui ,
  • GAO Yunyun ,
  • YAN Yi ,
  • WANG Jungang ,
  • LU Shiling
Expand
  • 1(College of Food Science and Technology,Shihezi University,Shihezi 832000,China)
    2(Institute of Agro-products Processing Science and Technology, Xinjiang Academy of Agricultural andReclamation Science, Shihezi 832000, China)
    3(Key Laboratory of Agro-Products Processing, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China)

Received date: 2020-01-17

  Online published: 2020-06-11

摘要

为挖掘新疆传统风干肉中乳酸菌的生物学特性以及产蛋白酶特性,以新疆塔城、额敏、富蕴、托里地区传统风干肉为研究对象,利用微生物可培养的方法结合形态观察及16S rDNA序列分析鉴定,通过选择性培养基对产蛋白酶的乳酸菌进行分离,并确定菌株的产酶能力。结果表明,新疆风干肉中的乳酸菌主要有11个属,高产蛋白酶菌株5株,其中A-6、A-18为乳酸乳球菌(Lactococcus lactis)、B-2为格氏乳球菌(Lactococcus garvieae)、G-11为耐久肠球菌(Enterococcus durans)、C-1为戊糖片球菌(Pediococcus pentosaceus)。菌株A-18、C-1最适生长温度为40 ℃,具有良好的耐酸耐盐特性。所产蛋白酶的最适pH为6,菌株C-1酶活力为35.63 U/mL、菌株A-18酶活力为32.41 U/mL。2株菌所产蛋白酶为酸性蛋白酶。Na+和K +在1和10 mmol/L 浓度下诱导蛋白酶活性略有增加(P>0.05)。Mn2+,Cu 2+和 Fe3+对蛋白酶的活性有抑制作用,Cu2+的抑制作用明显(P<0.05)。结果显示,菌株A-18、C-1具有很好的产酶性能,可为工业化生产新疆风干肉提供理论支撑,对风干肉的生产和推广具有重要意义。

本文引用格式

李丹阳 , 李宇辉 , 高云云 , 闫艺 , 王俊钢 , 卢士玲 . 新疆哈萨克族风干肉中产蛋白酶乳酸菌的筛选及酶学特性研究[J]. 食品与发酵工业, 2020 , 46(9) : 57 -63 . DOI: 10.13995/j.cnki.11-1802/ts.023410

Abstract

In order to study the biological and enzyme-producing characteristics of lactic acid bacteria in Xinjiang air-dried meat, the traditional air-dried meat in Tacheng, Emin, Fuyun and Tuoli regions of Xinjiang were sampled and the bacteria were isolated and identified. The results showed that the lactic acid bacteria in Xinjiang air-dried meat mainly consisted of 11 genera and 5 high-protease strains, of which A-6 and A-18 were Lactococcus lactis, B-2 was Lactococcus garvieae, G-11 was Enterococcus durans and C-1 was Pediococcus pentosaceus. The optimum growth temperature of strains A-18 and C-1 was 40 ℃, which had good acid and salt resistance. The optimum pH of the protease produced by them is 6. The enzyme activity of strain C-1 was 35.63 U/mL, and that of strain A-18 was 32.41 U/mL. The protease produced by the two strains wasacidicprotease. Na+andK+ induced slight increase in protease activity at concentrations of 1 mmol/L and 10 mmol/L (P>0.05). Mn2+, Cu2+ and Fe3+ had inhibitory effects on protease activity. The inhibitory effect of Cu2+ is obvious (P<0.05). The results showed that strains A-18 and C-1 had better enzyme-producing performance, which could provide theoretical support for the industrial production of Xinjiang air-dried meat and was of great significance for the production and promotion of air-dried meat.

参考文献

[1] 李宇辉,郭安民,刘成江,等.新疆风干肉中优势乳酸菌的分离及产酶特性分析[J].食品与发酵工业,2018,44(1):80-85.
[2] 沙坤.新疆风干牛肉质量特征及风味形成机制的研究[D].北京:中国农业科学院,2015.
[3] LOPEZ C M, BRU E, VIGNOLO G M, et al. Identification of small peptides arising from hydrolysis of meat proteins in dry fermented sausages[J]. Meat Science, 2015,104:20-29.
[4] TODOROV, STOJANOVSKI S, ILIEV I, et al. Technology and safety assessment for lactic acid bacteria isolated from traditional Bulgarian fermented meat product “lukanka”[J]. Brazilian Journal of Microbiology, 2017,48(3):567-586.
[5] GASSON M J. Progress and potential in the biotechnology of lactic acid bacteria[J]. FEMS Microbiology Reviews, 1993,12(1-3):3-19.
[6] LEGAKO J F, DINH T T, MILLER M F, et al. Effects of USDA beef quality grade and cooking on fatty acid composition of neutral and polar lipid fractions[J]. Meat Science, 2015, 100(100):246-255.
[7] CHAVES,SERIO,MAZZARRINO, et al. Control of household mycoflora in fermented sausages using phenolic fractions from olive mill wastewaters[J]. International Journal of Food Microbiology, 2015, 207:49-56.
[8] GALLEGOS J, ARCE C, JORDANO R, et al. Target identification of volatile metabolites to allow the differentiation of lactic acid bacteria by gas chromatography-ion mobility spectrometry[J]. Food Chemistry, 2016, 220:362-370.
[9] DEMASI T W,WARDLAW, et al. Nonprotein Nitrogen (NPN) and Free amino acid contents of dry, fermented and nonfermented sausages[J]. Meat Science,1990, 27(1):1-12.
[10] AMMOR,DUFOUR, ZAGOREC, et al. Characterization and selection of Lactobacillus sakei strains isolated from traditional dry sausage for their potential use as starter cultures[J]. Food Microbiology, 2005,22(6):529-538.
[11] 周才琼,代小容,杜木英.酸肉发酵过程中挥发性风味物质形成的研究[J]. 食品科学, 2010,31(7):98-104.
[12] ESSID I, MEDINI M, HASSOUNA M, et al. Technological and safety properties of Lactobacillus plantarum strains isolated from a Tunisian traditional salted meat[J]. Meat Science, 2009,81(1):203-208.
[13] 林伟涛,徐世明,刘蓉宏,等.中式发酵香肠菌种的分离筛选和初步鉴定[J].烟台大学学报(自然科学与工程版),2008(2):99-104.
[14] SUN F D,HU Y Y,KONG X Y, et al. Production, purification and biochemical characterization of the microbial protease produced by Lactobacillus fermentum R6 isolated from Harbin dry sausages[J]. Process Biochemistry,2019,10:20-29.
[15] 马燕,倪永清,卢士玲,等.新疆特色干酪中乳酸菌的分离鉴定[J]. 中国酿造, 2011, 30(8):38-40.
[16] 张晓燕.产低温蛋白酶菌株的筛选及酶学特性研究[D].新疆:新疆农业大学, 2014.
[17] FARHADIAN S, ASOODEH A,LAGZIAN M. Purification, biochemical characterization and structural modeling of a potential htrA-like serine protease from Bacillus subtilis DR8806[J]. Journal of Molecular Catalysis B: Enzymatic, 2015, 115:51-58.
[18] 桑鹏,王肇衿,陈贵元,等.耐热蛋白酶产生菌的筛选鉴定及其酶学性质研究[J].中国饲料,2019(23):41-45.
[19] 张大为,张洁,田永航.白贝自然发酵调味液中乳酸菌的分离鉴定及生物学特性的研究[J].现代食品科技,2019,35(11):76-82;292.
[20] 王俊钢,李宇辉,郭安民,等.新疆风干牛肉成熟过程中理化及微生物特性分析[J].食品与发酵工业,2016,42(10):129-133.
[21] 罗强,李幸洋,陈炼红,等.传统发酵泡菜中乳酸菌种群组成及优良菌株产酸耐酸特性分析[J/OL].食品科学:1-12[2020-01-10].
[22] 翟磊,凌空,宋振,等.哈萨克传统发酵食品中乳酸菌的分离鉴定及代谢特性研究[J].食品与发酵工业,2017,43(7):122-127.
[23] 林松洋,郝利民,刘鑫,等.乳酸菌耐盐分子机制研究进展[J].食品科学,2018,39(3):295-301.
[24] SINGH S K, TRIPATHI V R, JAIN R K, et al. An antibiotic, heavy metal resistant and halo tolerant Bacillus cereus SIU1 and its thermoalkaline protease[J]. Microbial Cell Factories, 2010, 9(1):59-63.
[25] SALIHI A, ASOODEH A, ALIABADIAN M, et al. Production and biochemical characterization of an alkaline protease from Aspergillus oryzae CH93[J]. International Journal of Biological Macromolecules,2017, 94:827-835.
[26] SUN Q, CHEN F, GENG F, et al. A novel aspartic protease from Rhizomucor miehei expressed in Pichia pastoris and its application on meat tenderization and preparation of turtle peptides[J]. Food Chemistry, 2017, 245:570-577.
[27] CASTILLO-YAÑEZA F J, PACHECO-AGUILAR R, GARCIA-CARREÑO F L, et al. Characterization of acidic proteolytic enzymes from Monterey sardine (Sardinopssagaxcaerulea) viscera[J].Food Chemistry,2004,85(3):343-350.
[28] VALLEE B L, ULMER D D. Biochemical effects of mercury, cadmium, and lead[J]. Annual Review of Biochemistry, 1972, 41(1):91-128.
[29] KRYSTALENIA V, AGGELIKI S, LEONIDAS G T. Purification and kinetics of two novel thermophilic extracellular proteases from Lactobacillus helveticus, from kefir with possible biotechnological interest[J]. Bioresource Technology, 2008, 99(13):5 804-5 813.
[30] YU, PIN, HUANG, et al. Purification and characterization of a H2O2-tolerant alkaline protease from Bacillus sp. ZJ1502, a newly isolated strain from fermented bean curd[J]. Food Chemistry, 2019,274: 510-517.
文章导航

/