为探究浒苔多糖(Enteromorpha prolifera polysaccharides,EPP)的结构与抗氧化活性,该研究以浙江象山浒苔为原料,采用正交实验对浒苔多糖提取工艺进行优化,用DEAE-52纤维素柱对浒苔多糖进行分离纯化,并用傅里叶变换红外光谱(Fourier transform infrared spectroscopy,FTIR) 对多糖结构进行表征。结果表明,浒苔多糖在粉碎目数30~40目、浸提时间90 min、浸提温度60 ℃和液料比为30∶1条件下达到最佳提取效果,提取率为16.34%;浒苔粗多糖分离纯化得到3个组分EPP-1、EPP-2、EPP-3,用凝胶渗透色谱法(gel permeation chromatography,GPC)测得其分子质量分别为121、164、162 ku;通过红外分析可知,EPP-1、EPP-2和EPP-3均为吡喃多糖,EPP-2可能是含有β-D-吡喃葡萄糖和蛋白质复合的酸性多糖,ESP-3可能为含有β-D-吡喃葡萄糖的酸性多糖。该研究结果可为浒苔的综合利用及其在医药和功能性食品行业的应用提供一定的基础依据。
In order to explore the structure and antioxidant activity of Enteromorpha prolifera polysaccharides (EPP), the extraction process of Enteromorpha prolifera polysaccharides was optimized by orthogonal experiment using Zhejiang Xiangshan Enteromorpha prolifera as raw material. The polysaccharide was separated and purified by DEAE-52 cellulose column, and its structure was characterized by Fourier transform infrared spectroscopy (FTIR). The results show that Enteromorpha prolifera polysaccharides has the best extraction effect under the conditions of 30~40 mesh crushing, 90 min extraction time, 60 ℃ extraction temperature and 30∶1 ratio of liquid to solid, and the extraction rate is 16.34%. The crude polysaccharide of Enteromorpha prolifera is separated and purified to obtain three components EPP-1, EPP-2 and EPP-3, and their molecular weights are measured by gel permeation chromatography (GPC) to be 121, 164 and 162 ku, respectively. Based on infrared analysis, EPP-1, EPP-2 and EPP-3 are pyran polysaccharide. EPP-2 may be acidic polysaccharide containing with β-D- glucopyran and protein complex. EPP-3 may be acidic polysaccharide containing with β-D- glucopyran. The results of this study can provide some basic basis for the comprehensive utilization of Enteromorpha prolifera as well as its application in medicine and functional food industry.
[1] 王婷婷, 郑丽杰, 韩威, 等. 不同海域浒苔品质差异评价[J]. 食品工业科技, 2019,40(1):321-326.
[2] 胡传明, 陆勤勤, 杨立恩, 等. 江苏海区浒苔的营养与食品安全性分析与评价[J]. 海洋与湖沼, 2018, 49(5):187-193.
[3] 庞云龙, 刘正一, 李佳霖, 等. 藻类生态型研究进展[J]. 生态学杂志,2017,36(4):1 076-1 082.
[4] 侯萍,何进武,刘肖冰,等. 海藻多糖在食品添加剂中的应用研究进展[J].保鲜与加工,2019,9(10):23-44.
[5] KTARI N, TRABELSI I, BARDAA S, et al. Antioxidant and hemolytic activities, and effects in rat cutaneous wound healing of a novel polysaccharide from fenugreek (Trigonella foenum-graecum) seeds[J]. 2017, 95:625-634.
[6] XIAO Ruixi,CHEN Huaguo,ZHU Xin. Research progress in separation and purification of plant polysaccharides[J]. Chinese Journal of Information on Traditional Chinese Medicine, 2018,34(5):136-140.
[7] 陈旋, 张翼, 张剑波. 植物多糖的研究进展[J]. 中国新药杂志, 2007(13):22-27.
[8] 蔡红梅, 田子玉. 苯酚-硫酸法测定草莓中总糖含量[J]. 吉林农业, 2019, 445(4):52.
[9] 王孝平, 邢树礼. 考马斯亮蓝法测定蛋白含量的研究[J]. 天津化工, 2009(3):43-45.
[10] YANG X M, YU W, OU Z P, et al. Antioxidant and immunity activity of water extract and crude polysaccharide from Ficus carica L. fruit[J]. Plant Foods for Human Nutrition, 2009, 64(2):167-173.
[11] HU T, LIU D, CHEN Y, et al. Antioxidant activity of sulfated polysaccharide fractions extracted from Undaria pinnitafida in vitro[J]. International Journal of Biological Macromolecules, 2010, 46(2):193-198.
[12] 滕浩, 颜小捷, 林增学, 等. 百香果皮多糖的组成及其体外抗氧化活性分析[J]. 食品与发酵工业, 2019,45(15):176-181.
[13] 赖颖,赵锦慧,陈茹. 响应面法优化超声波法提取红枣多糖工艺[J]. 生物加工过程, 2015,13(5):42-46.
[14] 林志娟, 陈永, 尤丽彤, 等. 响应面法优化超声辅助提取太子参多糖工艺研究[J]. 天然产物研究与开发, 2013(6):123-127.
[15] 田华, 尹学琼, 陈娟, 等. 绳江蓠多糖的提取及抗氧化活性研究[J]. 化学研究与应用, 2014(4):546-551.
[16] 李炳辉, 陈玲, 李晓玺, 等. 超声强化响应面法优化知母多糖的提取工艺[J]. 现代食品科技, 2011, 27(4):432-436.
[17] 宁可. 莼菜多糖提取分离、结构鉴定及抗氧化研究[D]. 天津:天津工业大学,2019.
[18] 王莹, 申秀娟, 张磊, 等. 火炬树芽多糖提取工艺的响应面优化及红外光谱分析[J]. 粮食与油脂, 2019,32(9):96-100.
[19] 罗光宏, 马明辉, 张喜峰, 等. 三相萃取体系分离富集螺旋藻多糖及其结构特征分析[J]. 食品与发酵工业, 2019,45(6):147-152.
[20] 李晓丽, 何勇, 裘正军. 一种基于可见-近红外光谱快速鉴别茶叶品种的新方法[J]. 光谱学与光谱分析, 2007, 27(2):279-282.
[21] 张怀林,吴涛,何兴道.基于QCL的红外吸收光谱技术的研究进展[J].光谱学与光谱分析,2019,39(9):2 751- 2 757.
[22] 张丽萍. 苹果多糖的分离纯化及其自由基消除活性与红外光谱分析[D]. 杨凌:西北农林科技大学, 2007:61-66.
[23] LI J, FAN L, DING S. Isolation, purification and structure of a new water-soluble polysaccharide from Zizyphus jujuba cv. Jinsixiaozao[J]. Carbohydrate Polymers, 2011, 83(2):477-482.