为了解淀粉基材料在食品中的迁移情况,以市售一次性淀粉基餐勺为研究对象,测定了一次性淀粉基餐勺在不同食品模拟物中的总迁移量,并分析不同温度对淀粉基餐勺在4%(体积分数)乙酸和10%(体积分数)乙醇2种食品模拟物中总迁移的影响以及利用扫描电子显微镜、红外光谱和体积排阻色谱对淀粉基餐勺和蒸发残渣进行表征分析。结果表明,淀粉基餐勺在水性和酸性食品模拟物的总迁移量显著大于油性食品模拟物;温度的提高会引起淀粉破裂和脱落从而导致总迁移增大;餐勺中淀粉分子大小和直链支链淀粉比例的不同是引起总迁移量显著性差异的重要原因。淀粉基餐勺不适合在高温条件下与水性食品和酸性食品接触,淀粉的破裂和脱落可能导致更多有意和非有意添加物进入食品模拟物(或食品)从而造成的安全隐患仍需关注。
Aiming to evaluate the safeness of starch-based spoons, the overall migration from starch-based spoons to different food simulants was determined. Results showed that the overall migration of spoons in water-based and in acidic food simulants was both significantly higher than that in oily food simulants. It was also found that with increased utilization temperature, the overall migration of starch-based spoons in 4% acetic acid and in 10% ethanol food simulants both increased. As observed by SEM, FTIR and by size- exclusion chromatography, it is likely that the gelatinization of starch, resulting from high temperature, is important in increasing the overall migration to food simulants, which is largely determined by the variation of starch molecular sizes and amylose/amylopectin ratio. Overall, the current study points out that starch-based spoons are not suitable for contacting with water-based and acid food under high temperature and more attention should be paid to reduce the safety risks of starch-based spoons.
[1] O′CONNOR I A, GOLSTEIJN L, HENDRIKS A J. Review of the partitioning of chemicals into different plastics: Consequences for the risk assessment of marine plastic debris[J]. Marine Pollution Bulletin, 2016, 113 (1-2):17-24.
[2] ABEL DE SOUZA MACHADO A, KLOAS W, ZARFL C, et al. Microplastics as an emerging threat to terrestrial ecosystems[J]. Global Change Biology, 2018, 24(4):1 405-1 416.
[3] CARBERY M, O'CONNOR W, PALANISAMI T. Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health[J]. Environment International, 2018, 115:400-409.
[4] AHMED T, SHAHID M, AZEEM F, et al. Biodegradation of plastics: current scenario and future prospects for environmental safety[J]. Environmental Science Pollution Research, 2018, 25(8):7 287-7 298.
[5] REDDY M M, VIVEKANANDHAN S, MISRA M, et al. Biobased plastics and bionanocomposites: Current status and future opportunities. Progress in Polymer Science, 2013, 38(10-11):1 653-1 689.
[6] 刁晓倩,翁云宣.淀粉基塑料研究进展及产业现状[J].中国塑料,2017,31(9):22-29.
[7] 申志翔,陈复生,宋小勇, 等.淀粉基生物可降解材料的研究进展[J].食品工业,2017,38(11):290-294.
[8] 李丽莎,马芮萍,孙世琨, 等.食品接触材料中有害物质的迁移研究展望[J].中国包装,2019,39(6):58-69.
[9] 魏晓晓,高峡,刘伟丽.GC-MS和LC-MS技术用于食品接触高分子中非有意添加物的检测研究[J].分析仪器,2019(3):51-55.
[10] 国家卫生和计划生育委员会.GB 31604.1—2015 食品安全国家标准 食品接触材料及制品迁移试验通则[S]. 北京: 中国标准出版社, 2015.
[11] 国家质量监督检验检疫总局.SN/T 2824—2011 中华人民共和国出入境检验检疫行业标准 出口食品接触材料 高分子材料 总迁移试验条件和方法选择指南[S]. 北京: 中国标准出版社, 2011.
[12] 国家卫生和计划生育委员会.GB 5009.156—2016 食品安全国家标准 食品接触材料及制品迁移试验预处理方法通则[S]. 北京: 中国标准出版社, 2016.
[13] 国家卫生和计划生育委员会.GB 31604.8—2016 食品安全国家标准 食品接触材料及制品 总迁移量的测定[S]. 北京: 中国标准出版社, 2016.
[14] YU Wenwen, TAN Xinle, ZOU Wei, et.al. Relationships between protein content, starch molecular structure and grain size in barley[J]. Carbohydrate Polymers, 2017, 155: 271-279.
[15] CAVE R A, SEABROOK S A, GIDLEY M J, et al. Characterization of starch by size-exclusion chromatography: The limitations imposed by shear scission[J]. Biomacromolecules, 2009, 10(8), 2 245-2 253.
[16] 金征宇,王禹,李晓晓,等.淀粉基生物可降解材料的研究进展[J].中国食品学报, 2019, 19(5):1-7.
[17] 聂丹.多种淀粉颗粒的扫描电镜下的形态分析[J].安徽农业科学, 2014, 42(33):11 863-11 865.
[18] CHEN X H, ZHOU L Y, PAN X M, et al. Effect of different compatibilizers on the mechanical and thermal properties of starch/polypropylene blends[J]. Journal of Applied Polymer Science, 2016, 133(17): 7.
[19] PINEDA-GÓMEZ P, CORAL D F, RAMOS-RIVERA D, et al. Thermo-alkaline treatment. A process that changes the thermal properties of corn starch[J]. Procedia Food Science, 2011, 1:370-378.
[20] LIU X X, YU L, XIE F W, et al. Kinetics and mechanism of thermal decomposition of cornstarches with different amylose/amylopectin ratios[J]. Starch -Stärke, 2010, 62(3-4):139-146.
[21] 苑春苗,李畅,李刚,等.氮气气氛下玉米淀粉热分解动力学参数[J].东北大学学报(自然科学版),2012,33(4):584-587.
[22] 傅利玉,黄海涛,胡进伟.差示扫描量热仪测量聚丙烯熔点的不确定度评定[J].广州化工,2015,43(10):131-133.
[23] 陆春谊,周全,庞锦英,等.TG-MS联用技术研究膨胀阻燃聚丙烯的热降解机理[J].塑料科技,2018,46(1):26-31.
[24] 陈晓红, 张倩芝, 张卫红, 等.多重衰减全反射-红外光谱法在复合材料表面分析中的应用[J].光散射学报,2007(2):158-162.
[25] LINARES VELIZ A B, JIMNEZ J C, LPEZ P, et al, Biodegradability study by FTIR and DSC of polymers films based on polypropylene and cassava starch[J]. Orbital: The Electronic Journal of Chemistry,2019(2):11.
[26] 国家卫生和计划生育委员会.GB 4806.7—2016 食品安全国家标准 食品接触用塑料材料及制品[S]. 北京: 中国标准出版社, 2016.
[27] DANG K M, YOKSAN R. Development of thermoplastic starch blown film by incorporating plasticized chitosan[J]. Carbohydrate Polymers,2015, 115:575-581.
[28] BOURTOOM T, CHINNAN M S. Preparation and properties of rice starch–chitosan blend biodegradable film[J]. LWT - Food Science and Technology,2008, 41(9):1 633-1 641.
[29] FRANCK D, GRE′GORIO C, SABRINA B, et al. Characterization of crosslinked starch materials with spectroscopic techniques[J]. Journal of Applied Polymer Science, 2004, 93(6):2 650-2 663.
[30] 任静,刘刚,欧全宏,等.淀粉的红外光谱及其二维相关红外光谱的分析鉴定[J].中国农学通报,2015,31(17):58-64.
[31] 李明.高直链淀粉在食品和材料领域应用的研究进展[J].食品安全质量检测学报, 2019, 10(20):6 739-6 746.
[32] 周慧颖,彭小松,欧阳林娟,等.支链淀粉结构对稻米淀粉糊化特性的影响[J].中国粮油学报, 2018, 33(8):25-30;36.