In order to investigate a suitable processing technology to produce dried shiitake slices, this research evaluated the effects of five drying methods, including freeze-drying (FD), intermittent microwave drying at different power (IMD), hot air followed by microwave drying (HAD+MD), freeze-drying followed by microwave drying (FD+MD), and microwave drying followed by freeze-drying (MD+FD), on shiitake slices quality in terms of their physicochemical properties, color, texture, appearance and microstructure. A comprehensive evaluation was performed using grey correlation analysis based on the coefficient of variation. Results showed that the value of ΔE (10.76±0.83) and rehydration coefficient [(59.09±3.91)%] in FD were significantly better than other groups (P<0.05). Furthermore, the comprehensive retention of crude protein, lentinan and reducing sugar in FD were great. The shrinkage and fragmentation of FD+MD were similar to FD (P>0.05). Texture test showed that the hardness and springness of FD+MD and MD+FD were similar to FD (P>0.05), and the chewiness and resilience of them were better than FD. And the surface of IMD and HAD+MD formed hard shell which resulting in severe shrinkage and browning. However, the formaldehyde content of IMD [(28.02±0.62) mg/kg] was the lowest (P<0.05). Moreover, a uniform and full honeycomb network microstructure were observed in FD, FD+MD and MD+FD. The comprehensive evaluation result was: FD+MD>FD>MD+FD>HAD+MD>IMD. Therefore, FD+MD was a promising method for processing dried shiitake slices in these five methods. This study provides ideas for processing and quality evaluation of dried shiitake products.
[1] TURŁO J, GUTKOWSKA B, HEROLD F, et al. Optimizing vitamin B12 biosynthesis by mycelial cultures of Lentinula edodes (Berk.) Pegl [J]. Enzyme and Microbial Technology, 2008, 43(4): 369-374.
[2] 刘晓, 闫语婷. 香菇的营养价值及综合利用现状与前景 [J]. 食品工业, 2017, 38(3): 207-210.
[3] TIAN Y, ZHAO Y, HUANG J, et al. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms [J]. Food Chemistry, 2016, 197: 714-722.
[4] MATTILA P, SALO-VÄÄNÄNEN P, KÖNKÖ K, et al. Basic composition and amino acid contents of mushrooms cultivated in finland[J]. Journal of Agricultural and Food Chemistry, 2002, 50(22): 6 419-6 422.
[5] REN G, XU L, LU T, et al. Structural characterization and antiviral activity of lentinan from Lentinus edodes mycelia against infectious hematopoietic necrosis virus [J]. International Journal of Biological Macromolecules, 2018, 115: 1 202-1 210.
[6] SINGH P, LANGOWSKI H-C, WANI A A, et al. Recent advances in extending the shelf life of fresh Agaricus mushrooms: A review[J]. Journal of the Science of Food and Agriculture, 2010, 90(9): 1 393-1 402.
[7] DAS I, ARORA A. Alternate microwave and convective hot air application for rapid mushroom drying [J]. Journal of Food Engineering, 2018, 223: 208-219.
[8] 孙帅, 崔政伟. 微波联合干燥方法的发展趋势及展望 [J]. 食品工业, 2013, 34(1): 158-161.
[9] 张志勇, 李元强, 刘成海, 等. 基于“热失控”规律的香菇微波干燥工艺优化[J]. 食品科学2020,41(10):230-237.
[10] DEHGHANNYA J, HOSSEINLAR S-H, HESHMATI M K. Multi-stage continuous and intermittent microwave drying of quince fruit coupled with osmotic dehydration and low temperature hot air drying [J]. Innovative Food Science & Emerging Technologies, 2018, 45: 132-151.
[11] BOTHA G E, OLIVEIRA J C, AHRNÉ L. Microwave assisted air drying of osmotically treated pineapple with variable power programmes [J]. Journal of Food Engineering, 2012, 108(2): 304-311.
[12] 张慧, 张裕仁, 杨佳, 等. 响应面法优化香菇热风-微波联合干燥工艺 [J]. 食品工业科技, 2019, 40(14): 214-221;232.
[13] ZHAO D, AN K, DING S, et al. Two-stage intermittent microwave coupled with hot-air drying of carrot slices: Drying kinetics and physical quality[J]. Food and Bioprocess Technology, 2014, 7(8): 2 308-2 318.
[14] WANG H C, ZHANG M, ADHIKARI B. Drying of shiitake mushroom by combining freeze-drying and mid-infrared radiation [J]. Food and Bioproducts Processing, 2015, 94: 507-517.
[15] 段续, 张慜, 朱文学. 海参冻干-微波联合干燥技术研究 [J]. 包装与食品机械, 2009, 27(5): 36-41.
[16] 黄略略. 冻干—真空微波串联联合干燥苹果的保质和节能工艺及模型研究 [D]. 无锡:江南大学, 2011.
[17] 朱彩平, 孙静儒, 孙红霞, 等. 平菇微波-真空冷冻联合干燥工艺优化及其品质分析 [J]. 现代食品科技, 2019, 35(6): 129-138.
[18] 杨雷, 李莉, 董辉, 等. 应用灰色关联分析法筛选优良草莓新品种(系) [J]. 江西农业学报, 2018, 30(12): 47-50.
[19] 高琦, 李加恒, 韩昊廷, 等. 基于灰色关联分析法研究不同干燥方式对芜菁脆片的影响 [J]. 食品科学, 2019, 40(5): 95-101.
[20] ANTAL T, TAREK M, TAREK-TILISTYÁK J, et al. Comparative effects of three different drying methods on drying kinetics and quality of Jerusalem Artichoke (Helianthus tuberosus L.) [J]. Journal of Food Processing and Preservation, 2017, 41(3): e12 971.
[21] 钱革兰, 张琦, 崔政伟. 真空微波和冷冻干燥组合降低胡萝卜片的干燥能耗 [J]. 农业工程学报, 2011, 27(6): 387-392;399.
[22] XUE Y L, CHEN J N, HAN H T, et al. Multivariate analyses of the physicochemical properties of turnip (Brassica rapa L.) chips dried using different methods [J]. Drying Technology, 2020,38(4):411-419.
[23] 张乐, 李鹏, 王赵改, 等. 不同干燥方式对香菇品质的影响 [J]. 天津农业科学, 2015, 21(7): 149-154.
[24] 张海伟, 鲁加惠, 张雨露, 等. 干燥方式对香菇品质特性及微观结构的影响[J/OL]. 食品科学.http://kns.cnki.net/kcms/detail/11.2206.ts.20190920.1025.023.html.
[25] 王洪彩. 香菇中短波红外干燥及其联合干燥研究 [D]. 无锡:江南大学, 2014.
[26] 谢静, 赵阿丹, 熊善柏, 等. 干燥方式对酥脆香菇品质的影响 [J]. 食品科学, 2012, 33(13): 87-91.
[27] 邢娜,万金庆,厉建国, 等.不同干燥方法对苹果片品质及微观结构的影响 [J]. 食品与发酵工业, 2019, 45(16): 148-154.
[28] YI J, ZHOU L, BI J, et al. Influences of microwave pre-drying and explosion puffing drying induced cell wall polysaccharide modification on physicochemical properties, texture, microstructure and rehydration of pitaya fruit chips [J]. LWT - Food Science and Technology, 2016, 70: 271-279.
[29] 赵圆圆, 易建勇, 毕金峰, 等. 复水温度对香菇复水特性及品质的影响 [J]. 中国食品学报, 2020, 20(2): 181-188.
[30] 潘洪冬, 李江涛, 谢静, 等. 冻结条件对酥脆香菇品质的影响 [J]. 现代食品科技, 2016, 32(3): 259-264.
[31] 赵圆圆, 易建勇, 毕金峰, 等. 干燥方式对复水香菇感官、质构及营养品质的影响 [J]. 食品科学, 2019, 40(3): 101-108.
[32] 康明, 陶宁萍, 俞骏, 等. 不同干燥方式无花果干质构及挥发性成分比较 [J]. 食品与发酵工业, 2020, 46(4): 204-210.
[33] XU L, FANG X, WU W, et al. Effects of high-temperature pre-drying on the quality of air-dried shiitake mushrooms (Lentinula edodes)[J]. Food Chemistry, 2019, 285: 406-413.
[34] 刁恩杰, 丁晓雯, 章道明. 干燥方式对香菇中甲醛含量的影响 [J]. 食品科学, 2010, 31(2): 70-73.
[35] HERNANDO I, SANJUAN N, PÉREZ-MUNUERA I, et al. Rehydration of freeze-dried and convective dried boletus edulis mushrooms: Effect on some quality parameters[J]. Journal of food science, 2008, 73(8): E356-E362.
[36] GARCÍA-SEGOVIA P, ANDRÉS-BELLO A, MARTÍNEZ-MONZÓ J. Rehydration of air-dried Shiitake mushroom (Lentinus edodes) caps: Comparison of conventional and vacuum water immersion processes [J]. LWT - Food Science and Technology, 2010, 44(2): 480-488.