ε-聚赖氨酸是一种典型的同型L-赖氨酸聚合物,具有广谱抗菌活性和抗噬菌体活性,广泛应用于食品和医药行业。该文克隆了经密码子优化的白色链霉菌Streptomyces albulus来源的ε-聚赖氨酸合酶编码基因pls,首次实现了其在食品安全性菌株枯草芽孢杆菌Bacillus subtilis 168中的异源表达。其次,对B. subtilis 168/pMA5-pls重组菌株生产ε-聚赖氨酸的全细胞催化体系进行了优化,结果表明,在L-赖氨酸质量浓度0.5 g/L, 初始pH和温度分别为3.0和30 ℃条件下,ε-聚赖氨酸合酶的转化效果最好。在最优体系条件下,连续转化4 h,ε-聚赖氨酸的产量达到195.1 mg/L,高于已报道的Bacillus subtilis直接发酵生产的ε-聚赖氨酸产量。该研究构建的全细胞催化体系为食品级ε-聚赖氨酸的生产提供了新策略。
ε-poly-L-lysine is a typical L-lysine homopolypeptide with broad-spectrum antibacterial activity and anti-phage activity, which is widely used in food and pharmaceutical industries. Firstly, a codon optimized pls gene, encoding ε-poly-L-lysine synthetase from Streptomyces albulus was cloned, and for the first time realized its heterologous expression in GRAS strain Bacillus subtilis 168. Secondly, the whole-cell catalytic system for the production of ε-poly-L-lysine by the recombinant strain B. subtilis 168/pMA5-pls were optimized. The results showed that at a concentration of 0.5 g/L L-lysine, initial pH and temperature of 3.0 and 30 ℃ respectively, the conversion effect of ε-poly-L-lysine synthetase was best. Finally, under the optimal condition, continuous conversion of 4 hours, yielded approximately 195.1 mg/L of ε-poly-L-lysine, which was higher than the reported yield of ε-poly-L-lysine produced by Bacillus subtilis via direct fermentation. Therefore, the whole-cell catalytic system constructed in this study provides a new strategy for the safe production of ε-poly-L-lysine.
[1] YOSHIDA T,NAGASAWA T.ε-poly-L-lysine: Microbial production, biodegradation and application potential[J].Applied Microbiology and Biotechnology,2003,62(1):21-26.
[2] 石慧,李婵娟,张俊红. ε-聚赖氨酸产生菌及其应用研究概述[J].食品与发酵工业,2016,42(9):263-269.
[3] 张伟娜,李迎秋.ε-聚赖氨酸在食品中应用的进展[J].中国调味品,2012,37(12):5-9.
[4] HYLDGAARD M,MYGIND T,VAD B S,et al.The antimicrobial mechanism of action of ε-poly-L-lysine[J].Applied & Environental Microbiology,2014,80(24):7 758-7 770.
[5] YE Ruosong,XU Hengyi,WAN Cuixiang,et al.Antibacterial activity and mechanism of action of ε-poly-L-lysine[J].Biochemical Biophysical Research Communications,2013,439(1):148-153.
[6] CHEN Xusheng,TANG Lei,LI Shu, et al.Optimization of medium for enhancement of ε-Poly-L-Lysine production by Streptomyces sp. M-Z18 with glycerol as carbon source[J]. Bioresource Technology,2011,102(2):1 727-1 732.
[7] 董难,陈旭升,任喜东,等.发酵过程流加L-谷氨酸提高ε-聚赖氨酸的产量[J].食品与发酵工业,2013,39(7):79-82.
[8] REN Xidong,CHEN Xusheng,ZENG Xin,et al.Acidic pH shock induced overproduction of ε-poly-L-lysine in fed-batch fermentation by Streptomyces sp. M-Z18 from agro-industrial by-products[J].Bioprocess and Biosystems Engineering,2015,38(6):1 113-1 125.
[9] 余明洁,田丰伟,范大明,等.高产ε-聚赖氨酸白色链霉菌的复合诱变选育研究[J].食品工业科技,2008,29(7):99-101;104.
[10] 张超,王正刚,段作营,等.大剂量紫外诱变选育ε-聚赖氨酸高产菌[J].生物加工过程,2007,5(3):64-68.
[11] 吴光耀,陈旭升,王靓,等.核糖体工程技术选育ε-聚赖氨酸高产菌株[J].微生物学通报,2016,43(12):2 744-2 751.
[12] ZHOU Yongpeng,REN Xidong,WANG Liang,et al.Enhancement of ε-poly-lysine production in ε-poly-lysine-tolerant Streptomyces sp. by genome shuffling[J].Bioprocess & Biosystems Engineering,2015,38(9):1 705-1 713.
[13] SHIH I,SHEN M,VAN Y.Microbial synthesis of poly(ε-lysine) and its various applications[J].Bioresource Technology,2006,97(9):1 148-1 159.
[14] SHI Ci,ZHAO Xingchen,LIU Zonghui,et al.Antimicrobial, antioxidant, and antitumor activity of epsilon ε-poly-L-lysine and citral, alone or in combination[J].Food & Nutrition Research,2016,60(1):31 891.
[15] SINGH M,PATEL S K,KALIA V C.Bacillus subtilis as potential producer for polyhydroxyalkanoates[J].Microbial Cell Factories,2009,8(1): 38.
[16] WESTERS L,WESTERS H,QUAX W J.Bacillus subtilis as cell factory for pharmaceutical proteins: A biotechnological approach to optimize the host organism[J].Biochim et Biophys Acta,2004,1 694(1-3):299-310.
[17] EL-SERSY N A,ABDELWAHAB A E,ABOUELKHIIR S S,et al.Antibacterial and anticancer activity of ε-poly-L-lysine (ε-PL) produced by a marine Bacillus subtilis sp.[J].Journal of Basic Microbiology,2012,52(5):513-522.
[18] WALKER J M.The Protein Protocols Handbook[M].3rd edition T,New Jersey: Humama Press,2009.
[19] KRUGER N J.The bradford method for protein quantitation[J].Methods Mol Biol,1994,32:9-15.
[20] ZENG X,CHEN X S,REN X D,et al.Insights into the role of glucose and glycerol as a mixed carbon source in the improvement of ε-poly-L-lysine productivity[J].Applied Biochemistry Biotechnology,2014,173(8):2 211-2 224.
[21] WANG L,LI S,ZHAO J,et al.Efficiently activated ε-poly-L-lysine production by multiple antibiotic-resistance mutations and acidic pH shock optimization in Streptomyces albulus[J].Microbiologyopen,2019,8(5):e00 728.
[22] YAMANAKA K,MARUYAMA C,TAKAGI H,et al.ε-poly-L-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase[J].Nature Chemical Biology,2008,4(12):766-772.
[23] SHEN W C,YANG D,RYSER J P.Colorimetric determination of microgram quantities of polylysine by trypan blue precipitation[J].Analytical Biochemistry,1984,142(2):521-524.
[24] MAEDA S,KUNIMOTO K K,SASAKI C,et al.Characterization of microbial poly (ε-L-lysine) by FT-IR, Raman and solid state 13C NMR spectroscopies[J].Journal of Molecular Structure,2003,655(1):149-155.
[25] 黄静敏,吴清平,刘盛荣,等.ε-聚赖氨酸产生菌新菌株的筛选和产物结构鉴定[J].微生物学通报,2011,38(6):871-877.
[26] NISHIKAWA M.Molecular mass control using polyanionic cyclodextrin derivatives for the ε-poly-L-lysine biosynthesis by Streptomyces[J].Enzyme and Microbial Technology,2009,45(4):295-298.
[27] GUSTAFSSON C,GOVINDARAJAN S,MINSHULL J.Codon bias and heterologous protein expression[J].Trends in Biotechnology,2004,22(7):346-353.
[28] SHIMA S,MATSUOKA H,IWAMOTO T,et al.Antimicrobial action of ε-poly-L-lysine[J]. Journal of Antibiotics,1984,37(11):1 449-1 455.
[29] SHIMA S,OSHIMA S,SAKAI H.Biosynthesis of ε-poly-L-lysine by washed mycelium of Streptomyces albulus no. 346[J].Journal of the Agricultural Chemical Society of Japan,1983,57(3):221-226.