分析与检测

基于荧光共振能量转移的免疫传感器检测黄曲霉毒素B1

  • 欧阳秀酝 ,
  • 李琳 ,
  • 张林威 ,
  • 程云辉 ,
  • 许宙
展开
  • 1 长沙理工大学 化学与食品工程学院,湖南 长沙,410114
    2 华南理工大学 食品科学与工程学院,广东 广州,511442
硕士研究生(许宙副教授为通讯作者,E-mail: xz_jnu@126.com)

收稿日期: 2020-01-09

  修回日期: 2020-02-19

  网络出版日期: 2020-09-17

基金资助

国家重点研发计划(2016YFF0203800;2016YFF0103701);国家自然科学基金(31401566);湖南省创新平台与人才计划(2017RS3055);粮食深加工与品质控制湖南省2011协同创新项目(2013448);常熟市科技发展计划(社会发展类)项目(CS201605);苏州市科技计划项目(SNG201617)

Detection of aflatoxin B1 by immunosensor based on fluorescence resonance energy transfer

  • OUYANG Xiuyun ,
  • LI Lin ,
  • ZHANG Linwei ,
  • CHENG Yunhui ,
  • XU Zhou
Expand
  • 1 School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
    2 School of Food Science and Engineering, South China University of Technology, Guangzhou 511442, China

Received date: 2020-01-09

  Revised date: 2020-02-19

  Online published: 2020-09-17

摘要

制备水溶性上转换荧光纳米颗粒(up-conversion nanoparticles, UCNPs),表面修饰黄曲霉毒素B1(aflatoxin B1, AFB1)抗原作为能量供体探针;在金纳米颗粒(gold nanoparticles, AuNPs)表面修饰AFB1抗体作为能量受体探针,构建了一种基于荧光共振能量转移(fluorescence resonance energy transfer, FRET)的免疫传感器用于检测AFB1。结果表明,该检测体系中在AFB1质量浓度0.05~20 ng/mL线性相关(R2=0.990 9),检测限为0.02 ng/mL。将该方法应用于花生油样品中AFB1的检测,当加标水平为0.1、1、10 ng/mL时,回收率为106%~112%,相对标准偏差低于4.7%。该方法具有高特异性和高灵敏度的特点,可用于食品中AFB1的快速定量检测。

本文引用格式

欧阳秀酝 , 李琳 , 张林威 , 程云辉 , 许宙 . 基于荧光共振能量转移的免疫传感器检测黄曲霉毒素B1[J]. 食品与发酵工业, 2020 , 46(16) : 226 -230 . DOI: 10.13995/j.cnki.11-1802/ts.023311

Abstract

With water-soluble up-converting fluorescent nanoparticles (UCNPs) and gold nanoparticles (AuNPs) as energy donor-receptor pairs, a fluorescence resonance energy transfer (FRET) immunosensor was designed for the detection of aflatoxin B1 (AFB1). The proposed FRET immunosensor revealed a wide linear range of AFB1 concentration in 0.05-20 ng/mL (R2=0.990 9) with an extremely low detection limit of 0.02 ng/mL. This method was applied to the detection of peanut oil samples free of AFB1 contamination. The recoveries of AFB1 at three spiked levels (0.1, 1, 10 ng/mL) were in the range of 106%-112% with the relative standard deviations (RSDs) less than 4.7%. These results showed that the FRET immunosensor established in this study had good specificity and high sensitivity in the rapid detection of AFB1 in food.

参考文献

[1] JAISWAL P, JHA S N, KAUR J, et al. Detection of aflatoxin M1 in milk using spectroscopy and multivariate analyses[J]. Food Chemistry, 2018, 238: 209-214.
[2] SUN L, ZHAO Q. Competitive horseradish peroxidase-linked aptamer assay for sensitive detection of Aflatoxin B1[J]. Talanta,2018,179:344-349.
[3] 郑郁媛,林芬,邱伟,等.黄曲霉毒素毒作用机制研究进展[J]. 赣南医学院学报, 2018, 38(11): 112-116.
[4] OJIAMBO P S, BATTILANI P, CARY J, et al. Cultural and genetic approaches to manage aflatoxin contamination: Recent insights provide opportunities for improved control[J]. Phytopathology, 2018, 108(9): 1 024-1 037.
[5] LI Y F, DU Y, ZHAO J J, et al. A dilute-and-shoot based UPLC-MS/MS method for multimycotoxins analysis in astragali radix[J]. Journal of Aoac International, 2019, 102(4): 1 186-1 193.
[6] DU X, SCHRUNK D E, IMERMAN P M, et al. Evaluation of a diagnostic method to quantify aflatoxins B1 and M1 in animal liver by high-performance liquid chromatography with fluorescence detection[J]. Journal of Aoac International, 2019, 102(5): 1 530-1 534.
[7] LIU Y, LI W, DING Z, et al. Three-dimensional ordered macroporous magnetic photonic crystal microspheres for enrichment and detection of mycotoxins (Ⅱ): The application in liquid chromatography with fluorescence detector for mycotoxins[J]. Journal of Chromatography A, 2019, 1 604:460 475.
[8] HOUISSA H, LASRAM S, SULYOK M, et al. Multimycotoxin LC-MS/MS analysis in pearl millet (Pennisetum glaucum) from Tunisia[J]. Food Control, 2019, 106:106 738.
[9] LI R, MENG C, WEN Y, et al. Fluorometric lateral flow immunoassay for simultaneous determination of three mycotoxins (aflatoxin B1, zearalenone and deoxynivalenol) using quantum dot microbeads[J]. Microchimica Acta, 2019, 186(12):1-9.
[10] OUAKHSSASE A, CHAHID A, CHOUBBANE H, et al. Optimization and validation of a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for the determination of aflatoxins in maize[J]. Heliyon, 2019, 5(5): e01 565.
[11] ZHAO Z, YANG H, DENG S, et al. Intrinsic conformation response-leveraged aptamer probe based on aggregation-induced emission dyes for aflatoxin B1 detection[J]. Dyes and Pigments, 2019, 171: 107 767.
[12] YOU H, HUA X, FENG L, et al. Competitive immunoassay for imidaclothiz using upconversion nanoparticles and gold nanoparticles as labels[J]. Microchimica Acta, 2017, 184(4): 1 085-1 092.
[13] 许宙, 鲁士珍, 陈茂龙, 等. 基于上转换纳米粒子与金纳米粒子构建荧光共振能量转移体系检测双酚A方法研究[J]. 食品与机械, 2018, 34(9): 83-87.
[14] LI X H, SUN W M, WU J, et al. An ultrasensitive fluorescence aptasensor for carcino-embryonic antigen detection based on fluorescence resonance energy transfer from upconversion phosphors to Au nanoparticles[J]. Analytical Methods, 2018, 10(13): 1 552-1 559.
[15] LONG Q, ZHAO J, YIN B, et al. A novel label-free upconversion fluorescence resonance energy transfer-nanosensor for ultrasensitive detection of protamine and heparin[J]. Analytical Biochemistry, 2015, 477: 28-34.
[16] 高志贤. 食品安全快速检测新技术及新材料[M]. 北京: 科学出版社, 2015.
[17] 张莹莹, 钱志娟, 谢正军, 等. 基于上转换荧光纳米粒子和金纳米粒子间荧光共振能量转移的高灵敏赭曲霉毒素A检测方法研究[J]. 分析测试学报, 2018, 37(1): 31-38.
[18] LI Y, CAI J, LIU F, et al. Construction of a turn off-on fluorescent nanosensor for cholesterol based on fluorescence resonance energy transfer and competitive host-guest recognition[J]. Talanta, 2019, 201: 82-89.
[19] LI Z Q, ZHANG Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence[J]. Nanotechnology, 2008, 19(34): 345 606.
[20] DAI S L, WU S J, DUAN N, et al. An ultrasensitive aptasensor for Ochratoxin A using hexagonal core/shell upconversion nanoparticles as luminophores[J]. Biosensors & Bioelectronics, 2017, 91: 538-544.
[21] AMBROSI A, CASTAÑEDA M T, KILLARD A J, et al. Double-codified gold nanolabels for enhanced immunoanalysis[J]. Analytical Chemistry, 2007, 79(14): 5 232-5 240.
[22] SHE W, LUO K, ZHANG C, et al. The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron-doxorubicin conjugates for cancer therapy[J]. Biomaterials, 2013, 34(5): 1 613-1 623.
[23] 王瑞鑫, 张微, 李书国. 基于纳米材料构建免疫传感器快速测定粮油食品中的黄曲霉毒素B1[J]. 粮食与油脂, 2016, 29(1): 62-66.
[24] 韩现文, 钟其顶, 吕志远, 等. SPE-HPLC/FLD测定高粱中黄曲霉毒素B1方法研究[J]. 酿酒科技, 2014(5): 92-95.
[25] 刘晓伟, 王静静, 潘路路. 基于电化学方法检测花生油中黄曲霉毒素B1[J]. 分析试验室, 2017, 36(4): 452-455.
[26] 刘柱, 陈万勤, 沈潇冰, 等. 多功能柱净化-柱后光化学衍生-高效液相色谱法同时检测玉米和花生中9种真菌毒素[J]. 分析科学学报, 2014, 30(2): 168-172.
[27] 郭婷, 林淑凤, 马良, 等. 基于磁性纳米材料和适配体的荧光传感器检测牛奶中黄曲霉毒素M1[J]. 食品与发酵工业, 2019, 45(5): 218-223.
[28] 刘微, 张景, 李姝荟, 等. 基于交流电动作用的免疫传感器快速高灵敏检测花生油中的黄曲霉毒素B1[J]. 食品与发酵工业, 2019:45(22):248-254.
文章导航

/