研究报告

代谢工程改造谷氨酸棒杆菌合成透明质酸

  • 胡立涛 ,
  • 王阳 ,
  • 李佳莲 ,
  • 周思延 ,
  • 王道安 ,
  • 尹国斌 ,
  • 刘京京 ,
  • 康振 ,
  • 陈坚
展开
  • 1(工业生物技术教育部重点实验室(江南大学),江苏 无锡,214122)
    2(江南大学 生物工程学院,江苏 无锡,214122)
硕士研究生(陈坚教授为通讯作者,E-mail:jchen@jiangnan.edu.cn)

收稿日期: 2020-03-04

  修回日期: 2020-04-14

  网络出版日期: 2020-10-23

基金资助

江苏省科技支撑项目(BE2019630);国家重点研发计划 (2018YFA0901401);国家自然基金面上项目(31670092);江南大学自主科研计划重点项目(JUSRP51707A)

Metabolic engineering of Corynebacterium glutamicum for hyaluronic acid production

  • HU Litao ,
  • WANG Yang ,
  • LI Jialian ,
  • ZHOU Siyan ,
  • WANG Daoan ,
  • YIN Guobin ,
  • LIU Jingjing ,
  • KANG Zhen ,
  • CHEN Jian
Expand
  • 1(Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China)
    2(School of Biotechnology, Jiangnan University, Wuxi 214122, China)

Received date: 2020-03-04

  Revised date: 2020-04-14

  Online published: 2020-10-23

摘要

透明质酸是一种被广泛应用于医药、化妆品和食品等领域的糖胺聚糖。透明质酸的主要工业生产菌株为兽疫链球菌,由于该细菌具有致病性,因此迫切需要构建安全的透明质酸生产菌株。通过在食品级表达宿主谷氨酸棒杆菌中异源表达透明质酸合酶基因(pmHasA),实现了透明质酸的合成,摇瓶中产量达到0.35 g/L。通过强化代谢途径中尿苷二磷酸-葡萄糖脱氢酶基因(ugdA2)和磷酸氨基转移酶基因(glmS)的表达以及敲除乳酸脱氢酶基因(ldh),透明质酸产量提高至0.81 g/L。在此基础上优化诱导条件,确定异丙基-β-D硫代半乳糖苷浓度为0.8 mmol/L,诱导剂添加时间为2 h时,摇瓶中透明质酸产量最高达到1 g/L。经过3 L发酵罐分批补料发酵,透明质酸产量达到4.8 g/L。该文通过调控谷氨酸棒杆菌代谢途径实现了透明质酸安全、高效的合成,为食品级透明质酸的生产奠定了基础。

本文引用格式

胡立涛 , 王阳 , 李佳莲 , 周思延 , 王道安 , 尹国斌 , 刘京京 , 康振 , 陈坚 . 代谢工程改造谷氨酸棒杆菌合成透明质酸[J]. 食品与发酵工业, 2020 , 46(18) : 1 -7 . DOI: 10.13995/j.cnki.11-1802/ts.023858

Abstract

Hyaluronic acid is a glycosaminoglycan widely used in medicine, cosmetics and food industries. The main industrial production strain of hyaluronic acid is Streptococcus zooepidemicus. Because the bacteria are pathogenic, there is an urgent need to construct a safe hyaluronic acid producing strain. By heterologous expression of hyaluronic acid synthase (pmHasA) in a food-grade expression host, Corynebacterium glutamicum, the synthesis of current hyaluronic acid was achieved, and the yield in shake flasks reached 0.35 g/L. By enhancing the expression of the UDP-glucose dehydrogenase gene (ugdA2) and phosphoaminotransferase gene (glmS) in the metabolic pathway and knocking out the lactate dehydrogenase gene (ldh), the yield of hyaluronic acid increased to 0.81 g/L. Based on this, the induction conditions were optimized, and the optimal isopropyl-β-D-thiogalactopyranoside (IPTG) concentration was determined to be 0.8 mmol/L, and the induction time was 2 hours. Under these conditions, the highest yield of hyaluronic acid in shake flask was 1 g/L. After batch fed fermentation in a 3 L fermenter, the hyaluronic acid yield reached 4.8 g/L. In this paper, the safe and efficient synthesis of hyaluronic acid was achieved by regulating the metabolic pathway of Corynebacterium glutamicum, which laid the foundation for the production of food-grade hyaluronic acid.

参考文献

[1] WEISSMANN B, MEYER K. The structure of hyalobiuronic acid and of hyaluronic acid from umbilical cord1,2[J]. Journal of the American Chemical Society, 1954, 76(7): 1 753-1 757.
[2] DEANGELIS P L, JING W, DRAKE R R, et al. Identification and molecular cloning of a unique hyaluronan synthase from Pasteurella multocida[J]. J Biol Chem, 1998, 273(14): 8 454-8 458.
[3] LIU L, LIU Y, LI J, et al. Microbial production of hyaluronic acid: Current state, challenges, and perspectives[J]. Microb Cell Fact,2011,10: 99.http://link.springer.com/article/10.1186%2F1475-2859-10-99.
[4] KOGAN G, SOLTES L, STERN R, et al. Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications[J]. Biotechnol Lett, 2007, 29(1): 17-25.
[5] DE OLIVEIRA J D, CARVALHO L S, GOMES A M, et al. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms[J]. Microb Cell Fact, 2016, 15(1): 119.
[6] WALIMBE T, PANITCH A, SIVASANKAR P M, et al. A review of hyaluronic acid and hyaluronic acid-based hydrogels for vocal fold tissue engineering[J]. J Voice, 2017, 31(4): 416-423.
[7] KANG Z, ZHOU Z X, WANG Y, et al. Bio-Based strategies for producing glycosaminoglycans and their oligosaccharides[J]. Trends Biotechnol, 2018, 36(8): 806-818.
[8] JIN P, KANG Z, YUAN P, et al. Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168[J]. Metab Eng, 2016, 35: 21-30.DOI:10.1016/j.ymben.2016.01.008.
[9] Chien L J , Lee C K. Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin[J]. Biotechnol Prog, 2007, 23(5): 1 017-1 022.
[10] WESTBROOK A W, REN X, OH J, et al. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis[J]. Metab Eng, 2018, 47: 401-413.DOI:10.1016/j.ymben.2018.04.016.
[11] WIDNER B, BEHR R, VON DOLLEN S, et al. Hyaluronic acid production in Bacillus subtilis[J]. Appl Environ Microbiol, 2005, 71(7): 3 747-3 752.
[12] SUNGUROGLU C, SEZGIN DE, AYTAR ÇELIK P, et al. Higher titer hyaluronic acid production in recombinant Lactococcus lactis[J]. Prep Biochem Biotechnol, 2018, 48(8): 734-742.
[13] JEEVA P, SHANMUGA DOSS S, SUNDARAM V, et al. Production of controlled molecular weight hyaluronic acid by glucostat strategy using recombinant Lactococcus lactis cultures[J]. Appl Microbiol Biotechnol, 2019, 103(11): 4 363-4 375.
[14] PRASAD SB, JAYARAMAN G, RAMACHANDRAN K B. Hyaluronic acid production is enhanced by the additional co-expression of UDP-glucose pyrophosphorylase in Lactococcus lactis[J]. Appl Microbiol Biotechnol, 2010, 86(1): 273-283.
[15] PUVENDRAN K , JAYARAMAN G. Enhancement of acetyl-CoA by acetate co-utilization in recombinant Lactococcus lactis cultures enables the production of high molecular weight hyaluronic acid[J]. Appl Microbiol Biotechnol, 2019, 103(17): 6 989-7 001.
[16] JEONG E, SHIM W, KIM J. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight[J]. J Biotechnol, 2014, 185: 28-36.DOI:10.1016/j.jbiotec.2014.05.018.
[17] CHENG F, GONG Q, YU H, et al. High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum[J]. Biotechnol J, 2016, 11(4): 574-584.
[18] CHENG F, LUOZHONG S, GUO Z, et al. Enhanced biosynthesis of hyaluronic acid using engineered Corynebacterium glutamicum Via metabolic pathway regulation[J]. Biotechnol J, 2017, 12(10):1 700 268.
[19] CHENG F, YU H, STEPHANOPOULOS G, et al. Engineering Corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid[J]. Metab Eng, 2019, 55: 276-289.
[20] HOFFMANN J , ALTENBUCHNER J. Hyaluronic acid production with Corynebacterium glutamicum: Effect of media composition on yield and molecular weight[J]. J Appl Microbiol, 2014, 117(3): 663-678.
[21] WEIGEL P H , DEANGELIS P L. Hyaluronan synthases: A decade-plus of novel glycosyltransferases[J]. J Biol Chem, 2007, 282(51): 36 777-36 781.
[22] BITTER T , MUIR H M. A modified uronic acid carbazole reaction[J]. Anal Biochem, 1962, 4(4): 330-334.
[23] SCHULTE S, DOSS S S, JEEVA P, et al. Exploiting the diversity of streptococcal hyaluronan synthases for the production of molecular weight-tailored hyaluronan[J].Appl Microbiol Biotechnol, 2019, 103(18): 7 567-7 581.
[24] XIA Y, LI K, LI J, et al. T5 exonuclease-dependent assembly offers a low-cost method for efficient cloning and site-directed mutagenesis[J]. Nucleic Acids Res, 2019, 47(3): e15.
[25] KO YF, BENTLEY W E, WEIGAND W A, et al. An integrated metabolic modeling approach to describe the energy efficiency of Escherichia coli fermentations under oxygen-limited conditions: Cellular energetics, carbon flux, and acetate production[J]. Biotechnol Bioeng, 1993, 42(7): 843-853.
[26] SCHAFER A, TAUCH A, JÄGER W, et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: Selection of defined deletions in the chromosome of Corynebacterium glutamicum[J]. Gene, 1994, 145(1): 69-73.
文章导航

/