研究报告

番茄红素合成基因组合优化和产物测定

  • 周亲亲 ,
  • 徐沙 ,
  • 周景文
展开
  • 1(粮食发酵工艺与技术国家工程实验室(江南大学),江苏 无锡,214122)
    2(江南大学 生物工程学院,江苏 无锡,214122)
硕士研究生(周景文教授为通讯作者,E-mail:zhoujw1982@jiangnan.edu.cn)

收稿日期: 2020-02-26

  修回日期: 2020-04-25

  网络出版日期: 2020-10-23

基金资助

国家自然科学基金(31571817)

Optimization of lycopene biosynthesis pathway genes and product determination

  • ZHOU Qinqin ,
  • XU Sha ,
  • ZHOU Jingwen
Expand
  • 1(National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China)
    2(School of Biotechnology, Jiangnan University, Wuxi 214122, China)

Received date: 2020-02-26

  Revised date: 2020-04-25

  Online published: 2020-10-23

摘要

番茄红素(lycopene)是一种抗氧化性较强的天然色素,已广泛应用于食品、保健品及化妆品等领域。该研究首先在酿酒酵母YPH499△gal80中分别整合3个拷贝数的3种不同的外源牻牛儿基牻牛儿基焦磷酸合酶(geranylgeranyl diphosphate synthase, GGPPS)编码基因CrtE。然后分别选取不同来源的4种八氢番茄红素合酶(phytoene synthase, CrtB)编码基因CrtB和4种八氢番茄红素脱氢酶(phytoene dehydrogenase, CrtI)编码基因CrtI进行组合,得到16个不同的番茄红素游离表达质粒,转化上述突变株。此外对番茄红素测定方法也进行了探索和优化:分析在5种不同溶剂中番茄红素和β-胡萝卜素的吸收情况,确定合适的溶剂、波长、检测限和线性范围。通过肉眼观察菌落色泽深浅和酶标仪测定,最终筛选得到1株最优组合,即表达来源于曼地亚红豆杉(Taxus x media,Tm)的TmCrtE、成团泛菌(Pantoea agglomerans,Pa)的PaCrtB和三孢布拉霉氏菌(Blakeslea trispora,Bt)的BtCrtI的突变菌株。最终重组菌株摇瓶发酵,产量用酶标仪检测472 nm处的吸光度,达到1.33 mg/g DCW。该研究筛选得到的最优组合菌株,可强化番茄红素生产能力,为进一步获得高产番茄红素细胞工厂提供基础。

本文引用格式

周亲亲 , 徐沙 , 周景文 . 番茄红素合成基因组合优化和产物测定[J]. 食品与发酵工业, 2020 , 46(18) : 24 -32 . DOI: 10.13995/j.cnki.11-1802/ts.023762

Abstract

Lycopene is a natural pigment with strong oxidation resistance. It has been widely used in food, health products and cosmetic industries. In this study, three copies of three different heterologous CrtE genes coding geranylgeranyl diphosphate synthase (GGPPS) were integrated into the genome DNA of Saccharomyces cerevisiae YPH499△gal80. Four CrtB genes coding phytoene synthase (CrtB) and four CrtI genes coding phytoene dehydrogenase (CrtI) from diverse species were then combined into 16 different lycopene-producing episomal plasmids and then transformed into the above-mentioned mutant strains. Finally, the lycopene detection method was also explored and optimized. The absorbance in five different solvents was analyzed. The optimal solvent, wavelength, detection limit and linear range were defined. One optimal combination mutant was screened (CrtE from Taxus x media, CrtB from Pantoea agglomerans and CrtI from Blakeslea trispora) through visual observation of the color of colonies and micro plate reader detection. According to the absorbance at 472 nm by micro plate reader, the highest titer of lycopene reached 1.33 mg/g DCW (dry cell weight). The screened recombinant strain in this work enhanced the productivity of lycopene-producing strains and provided the basis for construction of cell factories for lycopene production.

参考文献

[1] MASCIO D P, KAISER S, SIES H. Lycopene was the most efficient biological carotenoid singlet oxygen quencher[J]. Archivers of Biochemistry and Biophysics, 1989, 274(2): 523-538.
[2] RAO A V, AGARWAL S. Role of antioxidant lycopene in cancer and heart disease[J]. Journal of the American College of Nutrition, 2000, 19(6): 563-569.
[3] ASSAR E A, VIDALLE M C, CHOPRA M, et al. Lycopene acts through inhibition of IκB kinase to suppress NF-κB signaling in human prostate and breast cancer cells[J]. Tumor Biology, 2016, 37(7): 1-11.
[4] CHOUDHARI S M, ANANTHANARAYAN L, SINGHAL R S. Use of metabolic stimulators and inhibitors for enhanced production of β-carotene and lycopene by Blakeslea trispora, NRRL 2895 and 2896[J]. Bioresource Technology, 2008, 99(8): 3 166-3 173.
[5] YE V M, BHATIA S K. Pathway engineering strategies for production of beneficial carotenoids in microbial hosts[J]. Biotechnology Letters, 2012, 34(8): 1 405-1 414.
[6] LIN Y, JAIN R, YAN Y. Microbial production of antioxidant food ingredients via metabolic engineering[J]. Current Opinion in Biotechnology, 2014, 26(7): 71-78.
[7] MA T, DENG Z, LIU T. Microbial production strategies and applications of lycopene and other terpenoids[J]. World Journal of Microbiology and Biotechnology, 2016, 32(1): 15.
[8] PADDON C J, WESTFALL P J, PITERA D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496(7 446): 528-532.
[9] ZHOU Y J, GAO W, RONG Q, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production[J]. Journal of the American Chemical Society, 2012, 134(6): 3 234-3 241.
[10] SYDOR T, SCHAFFER S, BOLES E. Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium[J]. Applied and Environmental Microbiology, 2010, 76(10): 3 361-3 363.
[11] DAI Z, LIU Y, ZHANG X, et al. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides[J]. Metabolic Engineering, 2013, 20: 146-156.https://doi.org/10.1016/j.ymben.2013.10.004.
[12] BLOCH K, CHAYKIN S, PHILLIPS A H, et al. Mevalonic acid pyrophosphate and isopentenyl pyrophosphate[J]. Journal of Biological Chemistry, 1959, 234: 2 595-2 604.https://doi.org/10.1002/jbmte.390010408.
[13] ZHAO J, LI Q, SUN T, et al. Engineering central metabolic modules of Escherichia coli for improving beta-carotene production[J]. Metabolic Engineering, 2013(17):42-50.https://doi.org/10.1016/j.ymben.2013.02.002.
[14] CHANG J J, THIA C, LIN H Y, et al. Integrating an algal β-carotene hydroxylase gene into a designed carotenoid-biosynthesis pathway increases carotenoid production in yeast[J]. Bioresource Technology, 2015, 184: 2-8.https://doi.org/10.1016/j.biortech.2014.11.097.
[15] SARRIA S, WONG B, GARCÍA M H, et al. Microbial synthesis of pinene[J]. ACS Synthetic Biology, 2014,3(7): 466-475.
[16] DING M Z, YAN H F, LI L F, et al. Biosynthesis of taxadiene in Saccharomyces cerevisiae: Selection of geranylgeranyl diphosphate synthase directed by a computer-aided docking strategy[J]. Plos One, 2014, 9(10): e109 348.
[17] 邸进申, 王燕燕, 郑辉杰, 等. 番茄红素的层析分离[J]. 精细化工, 2003, 20(4): 215-217.
[18] 孙国新, 王德才, 孙长颢. 反相高效液相色谱法测定番茄红素[J]. 中国公共卫生, 2003, 19(12): 1 517.
[19] 侯纯明, 何美, 周鑫. 番茄红素检测方法的建立[J]. 食品科学, 2007, 28(5): 295-298.
[20] 薛颖, 武兴德, 陈杭. 高效液相色谱法测定番茄及其制品中的番茄红素[J]. 中国食品卫生杂志, 2002, 14(5): 17-19.
[21] KIM Y S, LEE J H, KIM N H, et al. Increase of lycopene production by supplementing auxiliary carbon sources in metabolically engineered Escherichia coli[J]. Applied Microbiology and Biotechnology, 2011, 90(2): 489-497.
[22] 陈艳. 高产番茄红素酿酒酵母的设计构建与发酵过程优化[D]. 天津: 天津大学, 2017.
[23] YOON S H, KIM J E, LEE S H, et al. Engineering the lycopene synthetic pathway in E.coli, by comparison of the carotenoid carotenoid genes of Pantoea agglomerans and Pantoea ananatis[J]. Applied Microbiology and Biotechnology, 2007, 74(1): 131-139.
文章导航

/