生产与科研应用

椰子油降解菌的筛选及降解条件优化

  • 黄怀兴 ,
  • 邓毛程 ,
  • 李静 ,
  • 吴林杰 ,
  • 蔡亮 ,
  • 王富程 ,
  • 黄洁华 ,
  • 林铿淳 ,
  • 廖民聪
展开
  • (广东轻工职业技术学院 食品与生物技术学院,广东 广州,510300)
大专生(邓毛程教授和李静教授为共同通讯作者,E-mail:dengmc@163.com;eeslee2005@163.com)

收稿日期: 2019-11-10

  修回日期: 2020-06-05

  网络出版日期: 2020-10-23

基金资助

珠江学者人才项目(KYRC2007-001);2019年广东省普通高校特色创新项目(2019GKTSCX011);2016年特支计划人才项目(KYRC2007-003);广东轻工职业技术学院第十八届挑战杯项目 (2019-A-25);2019年广东轻工职业技术学院创新创业训练项目(1083319003)

Screening and degradation conditions of coconut oil-degrading strain

  • HUANG Huaixing ,
  • DENG Maocheng ,
  • LI Jing ,
  • WU Linjie ,
  • CAI Liang ,
  • WANG Fucheng ,
  • HUANG Jiehua ,
  • LIN Kengchun ,
  • LIAO Mincong
Expand
  • (College of Food and Biotechnology Technology,Guangdong Industry Polytechnic, Guangzhou 510300, China)

Received date: 2019-11-10

  Revised date: 2020-06-05

  Online published: 2020-10-23

摘要

为了对椰蓉进行发酵法脱脂,该文筛选椰子油高效菌种并研究该菌种的降解条件。以自然发酵椰浆为原料,筛选获得1株椰子油高效降解菌株YD22。经菌体形态与分子生物学鉴定,该菌株被鉴定为解脂亚罗酵母(Yarrowia lipolytica)。通过氮源与外加碳源的优选试验,分别确定酵母膏为最佳氮源,柠檬酸钠为最佳的外加碳源,它们的最佳用量分别为10 g/L和7.5 g/L。结果表明,在含有质量浓度为40 g/L椰子油的最佳培养基中,解脂亚罗酵母YD22发酵120 h,椰子油降解率达到85.76%,该研究结果可为椰蓉发酵法脱脂提供参考。

本文引用格式

黄怀兴 , 邓毛程 , 李静 , 吴林杰 , 蔡亮 , 王富程 , 黄洁华 , 林铿淳 , 廖民聪 . 椰子油降解菌的筛选及降解条件优化[J]. 食品与发酵工业, 2020 , 46(18) : 192 -196 . DOI: 10.13995/j.cnki.11-1802/ts.022766

Abstract

To remove coconut oil from the desiccated coconut by microbial fermentation, the highly effective coconut oil-degrading strains were isolated, and the degradation conditions of the target strain were optimized. Using natural fermented coconut milk as culture substance, strain YD22 was screened out with the highest degradation efficiency of coconut oil. It was determined as Yarrowia lipolytica by morphology and molecular identification. Through optimal experiments, yeast extract and sodium citrate were determined as the best nitrogen source and appending carbon source. Furthermore, the optimal dosage of them was 10 g/L and 7.5 g/L, respectively. Under the optimal conditions, the degradation rate of culture medium containing 40 g/L coconut oil reached 85.76% by YD22 after 120 h of incubation. The result could provide references for degreasing of desiccated coconut by fermentation.

参考文献

[1] 张玉锋, 郭玉如, 赵瑞洁, 等. 椰蓉及其膳食纤维的理化性质和功能活性分析[J]. 食品科技, 2019, 44(4):66-70.
[2] FENDRI L B, CHAARI F, MAALOUL M, et al. Wheat bread enrichment by pea and broad bean pods fibers: Effect on dough rheology and bread quality[J]. LWT-Food Science and Technology, 2016, 73(11):584-591.
[3] 叶秋萍, 曾新萍, 郑晓倩. 膳食纤维的制备技术及理化性能的研究进展[J]. 食品研究与开发, 2019, 40(17):212-217.
[4] HUA M, LU J X, QU D, et al. Structure, physicochemical properties and adsorption function of insoluble dietary fiber from ginseng residue: A potential functional ingredient[J]. Food Chemistry, 2019, 286:522-529.
[5] RODSAMRAN P, SOTHORNVIT R. Physicochemical and functional properties of protein concentrate from byproduct of coconut processing[J]. Food Chemistry, 2018, 241:364-371.
[6] 马开创, 黄宏飞, 彭吟雪, 等. 椰子分级蛋白制备的研究[J]. 中国油脂, 2019, 44(5):67-72.
[7] 郭帅, 李艳. 椰子活性蛋白与功能肽的研究进展[J]. 食品科技, 2018, 43(5):67-71;76.
[8] 郭帅. 椰子谷蛋白-1功能特性的分析[J]. 食品工业科技, 2017, 38(16):75-78;100.
[9] 林玉桓, 王晓红. 中国居民膳食营养状况分析与对策[J]. 江苏调味副食品, 2019(2):1-3.
[10] 覃丽霞, 程冬萍, 颜继忠, 等. 控制体重配方食品的研究进展[J]. 现代食品, 2017(7):3-6.
[11] 吴斯妍, 贾鑫, 杨栋, 等. 膳食纤维功能特性及构效关系的研究进展[J]. 中国食物与营养, 2019, 25(6):47-50.
[12] 罗洁霞, 徐克. 我国居民家庭膳食蛋白质和脂肪摄入量比较[J]. 中国食物与营养, 2019, 25(2):79-83.
[13] 杜晓静, 白新鹏, 姜泽放, 等. 脱脂椰蓉可溶性膳食纤维制备工艺及单糖组成和理化特性分析[J]. 食品科学, 2019, 40(2):245-251.
[14] 曾仕林, 黄小雪, 何东平, 等. 椰子分离蛋白制备工艺的研究[J]. 粮食与油脂, 2019, 32(6):45-49.
[15] 张月月, 汪燕, 彭青春, 等. 1株耐高温酸性脂肪酶产生菌的筛选鉴定与其酶学特性研究[J]. 食品与发酵工业, 2017, 43(10):96-101.
[16] 史红玲, 陈梦言, 刘飞, 等. 生活废弃油脂高效降解菌的筛选、鉴定及应用[J]. 食品与发酵工业, 2019, 45(17):48-53.
[17] PHONGJARUS N, SUVAPHAT C, SRICHAI N, et al. Photoheterotrophy of photosynthetic bacteria (Rhodopseudomonas palustris) growing on oil palm and soybean cooking oils[J]. Environmental Technology & Innovation, 2018, 10:290-304.
[18] KUMAR S, MATHUR A, SINGH V, et al. Bioremediation of waste cooking oil using a novel lipase produced by Penicillium chrysogenum SNP5 grown in solid medium containing waste grease[J]. Bioresource Technology, 2012, 120:300-304.
[19] 刘飞, 郭孝敬, 陈欢, 等. 新疆哈萨克族奶酪中潜在益生酵母菌的筛选[J]. 食品与发酵工业, 2018, 44(7):128-134.
[20] GUT A M, VASILJEVIC T, YEAGER T, et al. Characterization of yeasts isolated from traditional kefir grains for potential probiotic properties[J]. Journal of Functional Foods, 2019, 58:56-66.
[21] MAÏWORÉ J, NGOUNE L T, PIRO-METAYER I, et al. Identification of yeasts present in artisanal yoghurt and traditionally fermented milks consumed in the northern part of Cameroon[J]. Scientific African, 2019, 6:1-9.
[22] 冯豪, 江冰心, 张建国. 利用麸皮水解液培养深黄伞形霉积累油脂[J]. 化工进展, 2018, 37(11):4 437-4 443.
[23] 张龙, 郑根成, 潘龙, 等. ε-聚赖氨酸高产改造菌发酵过程分析与工艺改进[J]. 工业微生物, 2018, 48(3):17-23.
[24] Z·YWICKA A, WENELSKA K, JUNKA A, et al. An efficient method of Yarrowia lipolytica immobilization using oil-and emulsion-modified bacterial cellulose carriers[J]. Electronic Journal of Biotechnology, 2019, 41:30-36.
[25] JUSZCZYK P, RYMOWICZ W, KITA A, et al. Biomass production by Yarrowia lipolytica yeast using waste derived from the production of ethyl esters of polyunsaturated fatty acids of flaxseed oil[J]. Industrial Crops & Products, 2019, 138:1-10.
[26] VONG W C, YANG K L C A, LIU S Q. Okara (soybean residue) biotransformation by yeast Yarrowia lipolytica[J]. International Journal of Food Microbiology, 2016, 235:1-9.
[27] LIU X Y, YAN Y B, ZHAO P S, et al. Oil crop wastes as substrate candidates for enhancing erythritol production by modified Yarrowia lipolytica via one-step solid state fermentation[J]. Bioresource Technology, 2019, 294:1-9.
[28] DARVISHI F, FARAJI N, SHAMSI F. Production and structural modeling of a novel asparaginase in Yarrowia lipolytica[J]. International Journal of Biological Macromolecules, 2019, 125:955-961.
[29] 王亮, 胡曼, 王江月, 等. 马克斯克鲁维酵母高密度发酵条件的优化研究[J]. 食品工业科技, 2017, 38(17):111-118;124.
[30] 黄芳, 李欣, 李沛, 等. 富核糖核酸热带假丝酵母发酵培养基优化[J]. 中国酿造, 2019, 38(6):35-42.
[31] 张印, 薛永常. 油脂降解菌种的鉴定及降解条件优化[J]. 微生物学杂志, 2015, 35(2):90-94.
文章导航

/