综述与专题评论

柑橘枯水研究进展

  • 姚世响 ,
  • 李秋雨 ,
  • 曹琦 ,
  • 邓丽莉 ,
  • 曾凯芳
展开
  • 1(西南大学 食品科学学院,重庆,400715)
    2(西南大学食品贮藏与物流研究中心,重庆,400715)
博士,副教授(曾凯芳教授为通讯作者,E-mail:zengkaifang@163.com)

收稿日期: 2020-02-19

  修回日期: 2020-04-04

  网络出版日期: 2020-10-23

基金资助

国家自然科学基金青年基金项目(31601520);重庆市技术创新与应用发展专项重点项目(cstc2019jscx-dxwtBX0027);中央高校基本科研业务费项目(XDJK2019B061)

Granulation of citrus fruit: Research progress and future directions

  • YAO Shixiang ,
  • LI Qiuyu ,
  • CAO Qi ,
  • DENG Lili ,
  • ZENG Kaifang
Expand
  • 1(College of Food Science,Southwest University,Chongqing 400715, China)
    2(Food Storage and Logistics Research Center, Southwest University, Chongqing 400715, China)

Received date: 2020-02-19

  Revised date: 2020-04-04

  Online published: 2020-10-23

摘要

枯水是柑橘采后常见的生理性病害,枯水果实糖酸风味急剧劣变、汁胞硬化,严重时不能食用,是制约柑橘产业发展的重要因素。该文从枯水对柑橘产业的影响、枯水与果实品质劣变的关系、枯水果实品质劣变的生物学基础、柑橘枯水防控技术等方面进行综述,并指出目前柑橘枯水研究存在的问题,展望了未来研究,以期推动柑橘枯水研究进展。

本文引用格式

姚世响 , 李秋雨 , 曹琦 , 邓丽莉 , 曾凯芳 . 柑橘枯水研究进展[J]. 食品与发酵工业, 2020 , 46(18) : 259 -263 . DOI: 10.13995/j.cnki.11-1802/ts.023692

Abstract

Granulation is a common physiological disorder of postharvest citrus fruit, which could sharply deteriorate sugars and organic acids of fruit, harden juice sacs and even lose the edible value. Thus, granulation is an important factor restricting the development of citrus industry. This paper reviews the impact of granulation on citrus industry, the correlation between granulation and fruit quality deterioration, the biological mechanism underlying the deterioration of fruit quality upon granulation, and citrus granulation prevention and control techniques. Furthermore, it points out several critical issues of the current research and looks forward to future research, hoping to promote the research on this field.

参考文献

[1] XU Q, CHEN L L, RUAN X, et al. The draft genome of sweet orange (Citrus sinensis)[J]. Nature Genetics, 2013,45(1):59-66.
[2] RITENOUR M A, ALBRIGO L G, BURNS J K. Granulation in Florida citrus[J]. Proceedings of the Florida State Horticultural Society, 2004,117:358-361.
[3] YAO S, CAO Q, XIE J, et al. Alteration of sugar and organic acid metabolism in postharvest granulation of Ponkan fruit revealed by transcriptome profiling[J]. Postharvest Biology and Technology, 2018,139:2-11.
[4] YAO S, WANG Z, CAO Q, et al. Molecular basis of postharvest granulation in orange fruit revealed by metabolite, transcriptome and methylome profiling[J]. Postharvest Biology and Technology, 2020,166:1-15.
[5] SHARMA R R, AWASTHI O P, KUMAR K. Pattern of phenolic content, antioxidant activity and senescence-related enzymes in granulated vs non-granulated juice-sacs of 'Kinnow' mandarin (Citrus nobilis x C. deliciosa)[J]. Food Science and Technology, 2016,53(3):1 525-1 530.
[6] BARTHOLOMEW E T, SINCLAIR W B, RABY E C. Granulation (crystallization) of Valencia oranges[J]. California Citrograph, 1934,21(12):458.
[7] WANG X Y, WANG P, QI Y P, et al. Effects of granulation on organic acid metabolism and its relation to mineral elements in citrus grandis juice sacs[J]. Food Chemistry, 2014, 145:984-990.
[8] 蒋跃明, 刘淑娴, 陈芳. 采后柑桔果实枯水及控制[J]. 植物学通报, 1991, 8(2):9-12.
[9] 刁俊明, 钟创光. 沙田柚果实贮藏期水分变化与枯水的关系[J]. 核农学报, 1999, 13(4):32-37.
[10] GOTO A. Relationship between pectic substances and calcium in healthy, gelated, and granulated juice sacs of Sanbokan (Citrus sulcata hort. ex Takahashi) fruit[J]. Plant Cell and Physiology, 1989, 30(6):801-806.
[11] 王日葵, 何首林, 胡西琴, 等. 椪柑果实贮期水分变化及其与枯水的关系[J]. 中国南方果树, 1996, 25(4):13.
[12] 梁芳菲, 王小容, 邓丽莉, 等. 采后柑橘果实糖酸代谢研究进展[J]. 食品与发酵工业, 2018,44(10):268-274.
[13] BARTHOLOMEW E T, SINCLAIR W B, TURRELL F M. Granulation of Valencia Oranges[M]. Berkeley: University of California Agricultral Experimental Station, 1941.
[14] 冯桂蓉, 谢姣, 邓丽莉, 等. 柑橘果实萜烯类挥发性物质研究进展[J]. 食品与机械, 2017,33(10):200-204.
[15] XIE J, DENG L, ZHOU Y, et al. Analysis of changes in volatile constituents and expression of genes involved in terpenoid metabolism in oleocellosis peel[J]. Food Chemistry, 2018, 243:269-276.
[16] 姚世响, 曹琦, 谢姣, 等. 枯水椪柑果肉挥发性物质及萜烯类合成途径基因表达特征[J]. 食品与机械, 2018,34(1):23-27.
[17] 胡位荣, 刘顺枝, 江月玲, 等. 红肉蜜柚汁胞枯水特性分析[J]. 食品科学, 2015,36(10):233-238.
[18] WANG X, LIN L, TANG Y, et al. Transcriptomic insights into citrus segment membrane′s cell wall components relating to fruit sensory texture[J]. BMC Genomics, 2018,19(1):280.
[19] WANG D, YEATS T H, ULUISIK S, et al. Fruit softening: Revisiting the role of pectin[J]. Trends in Plant Science, 2018,23(4):302-310.
[20] KUMAR M, CAMPBELL L, TURNER S. Secondary cell walls: Biosynthesis and manipulation[J]. Journal of Experimental Botany, 2016,67(2):515-531.
[21] WU J, PAN T, GUO Z, et al. Specific lignin accumulation in granulated juice sacs of Citrus maxima[J]. Journal of Agricultral and Food Chemistry, 2014,62(50):12 082-12 089.
[22] DING Y, CHANG J, MA Q, et al. Network analysis of postharvest senescence process in citrus fruits revealed by transcriptomic and metabolomic profiling[J]. Plant Physiology, 2015,168(1):357-642.
[23] RUAN Y L. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling[J]. Annual Review of Plant Biology, 2014,65(1):33-67.
[24] HUSSAIN S B, SHI C Y,GUO L X, et al. Recent advances in the regulation of citric acid metabolism in citrus fruit[J]. Critical Reviews in Plant Sciences, 2017,36(4):241-256.
[25] CHEN M, XIE X, LIN Q, et al. Differential expression of organic acid degradation-related genes during fruit development of navel oranges (Citrus sinensis) in two habitats[J]. Plant Molecular Biology Reporter, 2013,31(5):1 131-1 140.
[26] SHENG L, SHEN D, LUO Y, et al. Exogenous γ-aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit[J]. Food Chemistry, 2017,216:138-145.
[27] SHENG L, SHEN D, YANG W, et al. GABA pathway rate-limit citrate degradation in postharvest citrus fruit evidences from HB Pumelo (Citrus grandis) x Fairchild (Citrus reticulata) hybrid population[J]. Journal of Agricultral and Food Chemistry, 2017, 65(8):1 669-1 676.
[28] BURNS J K. Respiration rates and glycosidase activities of juice vesicles associated with section-drying in citrus[J]. Hortscience, 1990,25(5):544-546.
[29] TEROL J, SOLER G, TALON M, et al. The aconitate hydratase family from citrus[J]. BMC Plant Biology, 2010,10:222.
[30] SHOMER I, CHALUTZ E, VASILIIVER R, et al. Sclerification of juice sacs in pummelo (Citrus grandis) fruit[J]. Canadian Journal of Botany, 1989,67(3):625-632.
[31] WU L, WANG C, HE L, et al. Transcriptome analysis unravels metabolic and molecular pathways related to fruit sac granulation in a late-ripening navel orange (Citrus sinensis Osbeck)[J]. Plants, 2020,9(1):95.
[32] 丁健.柑橘果实粒化变异体的遗传背景及其性状形成的机理研究[D]. 武汉:华中农业大学, 2009.
[33] HWANGY S, HUBER D J, ALBRIGO L G. Comparison of cell wall components in normal and disordered juice vesicles of grapefruit[J]. Journal of the American Society for Horticultural Science, 1990,115(2):281-287.
[34] ZHANG J, WANG M, CHENG F, et al. Identification of microRNAs correlated with citrus granulation based on bioinformatics and molecular biology analysis[J]. Postharvest Biology and Technology, 2016,118:59-67.
[35] 张振珏, 谢志南, 许文宝. 琯溪蜜柚汁囊分化和粒化过程的解剖学观察[J]. 植物学报, 1999(1):16-19.
[36] NAKANO Y, YAMAGUCHIZ M, ENDO H, et al. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants[J]. Frontiers in Plant Science, 2015,6:288.
[37] TAYLOR-TEEPLES M, LIN L, DE LUCAS M, et al. An Arabidopsis gene regulatory network for secondary cell wall synthesis[J]. Nature, 2015,517(7 536):571-575.
[38] JIA N, LIU J, SUN Y, et al. Citrus sinensis MYB transcription factors CsMYB330 and CsMYB308 regulate fruit juice sac lignification through fine-tuning expression of the Cs4CL1 gene[J]. Plant Science, 2018,277:334-343.
[39] JIA N, LIU J, TAN P, et al. Citrus sinensis MYB transcription factor CsMYB85 induce fruit juice sac lignification through interaction with other CsMYB transcription factors[J]. Frontiers in Plant Science, 2019,10:213.
[40] WANG J, SUN L, XIE L, et al. Regulation of cuticle formation during fruit development and ripening in ‘Newhall’ navel orange (Citrus sinensis Osbeck) revealed by transcriptomic and metabolomic profiling[J]. Plant Science, 2016,243:131-144.
[41] HEY, HAN J, LIU R, et al. Integrated transcriptomic and metabolomic analyses of a wax deficient citrus mutant exhibiting jasmonic acid-mediated defense against fungal pathogens[J]. Horticulture Research, 2018,5(1):1-14.
[42] 庞杰, 张百超. 贮藏红桔褐斑和枯水控制途径研究[J]. 中国柑桔, 1992, 21(3):28-29.
[43] 张百超, 陈秀伟, 庞杰. 红桔果实粒化机理与控制途径的研究[J]. 西南农业大学学报, 1992, 14(5):82-84.
[44] CHEN K S, XU C J, LI F, et al. Postharvest granulation of ′HuyoÚ (Citrus Changshanensis) fruit in response to calcium[J]. Israel Journal of Plant Sciences, 2005,53(1):35-40.
[45] 陈昆松, 张上隆, 李方, 等. 胡柚果实采后枯水的研究[J]. 园艺学报, 1995, 22(1):35-39.
[46] 佘文琴, 潘东明, 林河通. 琯溪蜜柚果实成熟过程中汁胞粒化与活性氧代谢的关系[J]. 中国农业科学, 2009,42(5):1 737-1 743.
[47] SHARMA R, SINGH R, SAXENA S. Characteristics of citrus fruits in relation to granulation[J]. Scientia Horticulturae, 2006,111(1):91-96.
[48] 潘东明, 郑国华, 陈桂信, 等. 琯溪蜜柚汁胞粒化原因分析[J]. 果树科学, 1999, 16(3):202-209.
[49] SHARMA R R, SAXENA S K. Rootstocks influence granulation in Kinnow mandarin (Citrus nobilis×C.deliciosa)[J]. Scientia Horticulturae, 2004,101(3):235-242.
[50] SINGH R, SINGH R. Effect of nutrient sprays on granulation and fruit quality of ‘Dancy tangerine’ mandarin[J]. Scientia Horticulturae, 1981,14(3):235-244.
[51] 熊伟, 夏仁斌, 冯洋, 等. 一种越冬柑橘保果防枯水的方法: 中国,CN201310278538.4[P].2013-10-09.
文章导航

/