研究报告

不同超声辅助解冻方式对海鲈鱼肌原纤维蛋白的影响

  • 蔡路昀 ,
  • 许晴 ,
  • 曹爱玲
展开
  • 1(浙江大学 宁波研究院, 浙江 宁波,315100);
    2(浙江大学 生物系统工程与食品科学学院,智能食品技术与装备国家与地方联合工程实验室,浙江 杭州,310058);
    3(杭州海关,浙江 杭州,311208)
博士,副教授(本文通讯作者,E-mail:cailuyun@zju.edu.cn)

收稿日期: 2020-05-10

  修回日期: 2020-06-11

  网络出版日期: 2020-11-12

基金资助

国家重点研发计划(2018YFD0901106);国家自然科学基金项目(31401478)

Effects of different ultrasound-assisted thawing methods on the myofibrillar protein of the sea bass (Perca fluviatilis)

  • CAI Luyun ,
  • XU Qing ,
  • CAO Ailing
Expand
  • 1(Ningbo Research Institute, Zhejiang University, Ningbo 315100, China);
    2(College of Biosystems Engineering and Food Science, National & Local Joint Engineering Laboratory of Intelligent Food Techology and Equipment, Zhejiang University, Hangzhou 310058, China);
    3(Hangzhou Customs, Hangzhou 311208, China)

Received date: 2020-05-10

  Revised date: 2020-06-11

  Online published: 2020-11-12

摘要

从蛋白质的结构、聚集程度和氧化程度方面,探究不同解冻方式(超声微波解冻、超声远红外解冻、超声欧姆解冻、超声真空解冻和超声解冻)对海鲈鱼肌原纤维蛋白理化性质的影响,以期从分子水平上初步了解不同解冻方式引起肌原纤维蛋白变性的机理。蛋白质的结构变化通过拉曼光谱、紫外吸收光谱和内源荧光光谱来监测。拉曼光谱结果表明,所有解冻方式中超声微波解冻的α-螺旋含量最高,有效地维持了蛋白质结构。紫外吸收光谱和内源荧光光谱表明,超声微波解冻能较好地保留蛋白质的三级结构,而超声解冻的蛋白质结构受损严重。粒径、Zeta电位和十二烷基磺酸钠-聚丙烯酰胺凝胶电泳(sodium dodecyl sulfate polyacrylamide gel electrophoresis,SDS-PAGE)可以分析蛋白质的聚集程度。与新鲜样品相比,所有解冻方式的粒径和Zeta电位均无显著差异(P>0.05)。超声微波解冻的电泳条带与新鲜样品最接近,这表明蛋白质降解程度较低。总巯基含量和溶解度可以反映蛋白质的氧化程度。超声远红外解冻和超声微波解冻的总巯基含量与新鲜样品最接近,超声真空的溶解度与新鲜样品最接近。综上所述,超声微波解冻能较好地维持肌原纤维蛋白的理化性质。

本文引用格式

蔡路昀 , 许晴 , 曹爱玲 . 不同超声辅助解冻方式对海鲈鱼肌原纤维蛋白的影响[J]. 食品与发酵工业, 2020 , 46(20) : 1 -8 . DOI: 10.13995/j.cnki.11-1802/ts.024414

Abstract

The effects of different thawing methods (ultrasonic microwave thawing, ultrasonic far-infrared thawing, ultrasonic ohmic thawing, ultrasonic vacuum thawing, and ultrasound thawing) on the physicochemical properties of the myofibrillar protein in sea bass were investigated from the protein structure, aggregation degree and oxidation degree. The structural changes of the myofibrillar protein were monitored by Raman spectra, ultraviolet absorption spectra and intrinsic fluorescence spectra. These indicators could help to preliminarily understand the mechanism of myofibrillar protein denaturation caused by different thawing methods at the molecular level. The result of Raman spectra showed that the content of α-helix thawed by ultrasonic microwave thawing was the highest among all thawing methods, which maintaining the protein structure effectively. The ultraviolet absorption spectra and intrinsic fluorescence spectra showed that the ultrasonic microwave thawing could retain the tertiary structure of the protein better, but the structure of the protein thawed by ultrasound was seriously damaged. Particle size, Zeta potential and SDS-PAGE were used to analyze the degree of protein aggregation. Compared with the fresh sample, the particle size and Zeta potential of all the thawing methods were no significantly difference (P>0.05). The electrophoretic band of ultrasonic microwave thawing was the closest to the fresh sample, which indicated the degradation degree of the protein was lower. The contents of total sulfhydryl by ultrasonic far-infrared thawing and ultrasonic microwave thawing were closest to that of the fresh sample, and the solubility by ultrasonic vacuum thawing was the closest to that of the fresh sample. In summary, ultrasonic microwave thawing method is the best to maintain the physicochemical properties of myofibrin.

参考文献

[1] 谭明堂, 谢晶, 王金锋. 解冻方式对鱿鱼品质的影响[J]. 食品科学, 2019, 40(13): 94-101.
[2] YUAN C H,YU K F,CHEN S S,et al. Effect of freezing rate on the denaturation of myofibrillar proteins[J]. International Journal of Food Science & Technology, 2007, 20(6): 735-744.
[3] SRIKET P, BENJAKUL S, VISESSANGUAN W, et al. Comparative studies on the effect of the freeze-thawing process on the physicochemical properties and microstructures of black tiger shrimp (Penaeus monodon) and white shrimp (Penaeus vannamei) muscle[J]. Food Chemistry, 2006, 104(1): 113-121.
[4] XIA X F, KONG B H, LIU Q, et al. Physicochemical change and protein oxidation in porcine longissimus dorsi as influenced by different freeze-thaw cycles[J]. Meat Science, 2009, 83(2): 239-245.
[5] HOWELL N K, HERMAN H, LI-CHAN E C. Elucidation of protein-lipid interactions in a lysozyme-corn oil system by Fourier transform raman spectroscopy[J]. Journal of Agricultural & Food Chemistry, 2001, 49(3): 1 529-1 533.
[6] LIU G, XIONG Y L, BUTTERFIELD D A, et al. Chemical, physical, and gel-forming properties of oxidized myofibrils and whey- and soy-protein isolates[J]. 2000, 65(5): 811-818.
[7] CAI L Y, ZHANG W D, CAO A L, et al. Effects of ultrasonics combined with far infrared or microwave thawing on protein denaturation and moisture migration of Sciaenops ocellatus (red drum)[J]. Ultrasonics Sonochemistry, 2019, 55: 96-104.
[8] CAI L Y, CAO M J, CAO A L, et al. Ultrasound or microwave vacuum thawing of red seabream (Pagrus major) fillets[J]. Ultrasonics Sonochemistry, 2018, 47: 122-132.
[9] 年琳玉. 鲱鱼抗冻蛋白对真鲷品质特性的影响及抗冻机制研究[D]. 锦州:渤海大学, 2019.
[10] 李秀霞, 马莹莹, 刘宏影, 等. 超声波处理对金枪鱼肌原纤维蛋白理化性质和结构的影响[C]. 中国食品科学技术学会第十六届年会暨第十届中美食品业高层论坛论文摘要集. 北京:中国食品科学技术学会, 2019: 557-558.
[11] ZHANG M C, LI F F, DIAO X P, et al. Moisture migration, microstructure damage and protein structure changes in porcine longissimus muscle as influenced by multiple freeze-thaw cycles[J]. Meat Science, 2017, 133: 10-18.
[12] 李瑞平. 微波场内草鱼鱼肉蛋白营养和结构性质的研究[D]. 南昌:南昌大学, 2015.
[13] COSMIN M,BELICIU, CARMEN I. The effect of protein concentration and heat treatment temperature on micellar casein-soy protein mixtures[J]. Food Hydrocolloids, 2011, 25(6): 1 448-1 460.
[14] 姜晴晴, 吴春华, 董开成, 等. 解冻方式对带鱼蛋白性质及肌肉品质的影响[J]. 中国食品学报, 2016, 16(11): 17-27.
[15] HERRERO A M. Raman spectroscopy for monitoring protein structure in muscle food systems[J]. Critical Reviews in Food Science & Nutrition, 2008, 48(6): 512-523.
[16] 孙攀. 超声波处理对金枪鱼肌原纤维蛋白理化特性、结构和凝胶特性的影响[D]. 锦州:渤海大学, 2019.
[17] GUO J J, ZHOU Y H, YANG K, et al. Effect of low-frequency magnetic field on the gel properties of pork myofibrillar proteins[J]. Food Chemistry, 2019, 274: 775-781.
[18] JIANG J, CHEN J, XIONG Y L. Structural and emulsifying properties of soy protein isolate subjected to acid and alkaline ph-shifting processes[J]. Journal of Agricultural and Food Chemistry, 2009, 57(16): 7 576-7 583.
[19] RAGONE R, COLONNA G, BALESTRIERI C, et al. Determination of tyrosine exposure in proteins by second-derivative spectroscopy[J]. Biochemistry, 1984, 23(8): 1 871-1 875.
[20] ZHAO J Y, DONG F J, LI Y Y, et al. Effect of freeze-thaw cycles on the emulsion activity and structural characteristics of soy protein isolate[J]. Process Biochemistry, 2015, 50(10): 1 607-1 613.
[21] GUO X, QIU H H, DENG X R, et al. Effect of chlorogenic acid on the physicochemical and functional properties of coregonus peled myofibrillar protein through hydroxyl radical oxidation[J]. Molecules, 2019, 24(17): 3 205.
[22] ZOU Y, YANG H, ZHANG M H, et al. The influence of ultrasound and adenosine 5'-monophosphate marination on tenderness and the structures of myofibrillar proteins of beef[J]. Asian Australasian Journal of Animal Sciences, 2019, 32(10): 1 611-1 620.
[23] CAO M J, WANG J, CAO A L, et al. The impact of recrystallisation on the freeze - thaw cycles of red seabream (Pagrus major) fillets[J]. International Journal of Food Science and Technology. 2019, 54(5): 1 642-1 650.
[24] NIU J Z, ZHAO B F, GUO X J, et al. Effects of vacuum freeze-drying and vacuum spray-drying on biochemical properties and functionalities of myofibrillar proteins from silver carp[J]. Journal of Food Quality, 2019, 2019: 1-8.
[25] CHEN X, XIONG Y L, XU X L. High-pressure homogenization combined with sulfhydryl blockage by hydrogen peroxide enhance the thermal stability of chicken breast myofibrillar protein aqueous solution[J]. Food Chemistry, 2019, 285: 31-38.
[26] ZHENG J B, HAN Y R, GE G, et al. Partial substitution of NaCl with chloride salt mixtures: Impact on oxidative characteristics of meat myofibrillar protein and their rheological properties[J]. Food Hydrocolloids, 2019, 96: 36-42.
[27] SUN W Z, ZHAO M M, YANG B, et al. Oxidation of sarcoplasmic proteins during processing of cantonese sausage in relation to their aggregation behaviour and in vitro digestibility[J]. Meat Science, 2011, 88(3): 462-467.
[28] FU Q Q, LIU R, WANG H O, et al. Effects of oxidation in vitro on structures and functions of myofibrillar protein from beef muscles[J]. Journal of Agricultural & Food Chemistry, 2018, 67(20): 5 866-5 873.
[29] ZHOU L, FENG X, YANG Y L, et al. Effects of high-speed shear homogenization on the emulsifying and structural properties of myofibrillar protein under low-fat conditions[J]. Journal of the Science of Food and Agriculture, 2019, 99(14): 6 500-6 508.
[30] LI F F, WANG B, LIU Q, et al. Changes in myofibrillar protein gel quality of porcine longissimus muscle induced by its stuctural modification under different thawing methods[J]. Meat Science, 2019, 147: 108-115.
[31] GAO W H, HUANG Y P, ZENG X, et al. Effect of soluble soybean polysaccharides on freeze-denaturation and structure of myofibrillar protein of bighead carp surimi with liquid nitrogen freezing[J]. International Journal of Biological Macromolecules, 2019, 135: 839-844.
[32] LIN D Q, ZHANG L T, LI R J, et al. Effect of plant protein mixtures on the microstructure and rheological properties of myofibrillar protein gel derived from red sea bream (Pagrosomus major)[J]. Food Hydrocolloids, 2019, 96: 537-545.
[33] XIA M Q, CHEN Y X, GUO J J, et al. Effects of oxidative modification on textural properties and gel structure of pork myofibrillar proteins[J]. Food Research International, 2019, 121: 678-683.
[34] ZHANG L T, GUI P, ZHANG Y Q, et al. Assessment of structural, textural, and gelation properties of myofibrillar protein of silver carp (Hypophthalmichthys molitrix) modified by stunning and oxidative stress[J]. LWT - Food Science and Technology, 2018, 102: 142-149.
[35] CHENG J R, ZHU M J, LIU X M. Insight into the conformational and functional properties of myofibrillar protein modified by mulberry polyphenols[J]. Food Chemistry, 2020, 308: 125 592.
[36] 李慢. 超声辅助解冻对中国对虾品质影响的研究[D]. 杭州:浙江大学, 2018.
[37] DYMERSKI T, GEιBICKI J, WARDENCKI W, et al. Application of an electronic nose instrument to fast classification of polish honey types[J]. Sensors, 2014, 14(6): 10 709-10 724.
文章导航

/