通过测定不同产地地参中22种营养元素、无机元素和重金属元素的含量,对其质量和安全性进行评价。采用凯氏定氮法、电感耦合等离子体质谱法和氢化物发生原子荧光光谱法对10个不同产地的地参样品中N、P、K、Ca、Mg、Na、Al、Fe、Zn、Mn、Cu、Ba、Ni、B、Cr、Mo、Pb、Co、Se、Cd、As和Hg等22种元素进行含量测定,并用统计软件SPSS 20进行相关性分析、主成分分析和聚类分析。结果表明,不同产地地参中所含元素的种类基本一致,但含量存在差异。营养元素N、P含量较高;无机元素中K(21.98 mg/g)、Ca(1.81 mg/g)、Mg(1.24 mg/g)的平均含量远高于其他元素;重金属元素中Cu含量普遍较高,其次是Pb和As,除样品S2(云南大理)、S3(云南腾冲)、S5(广西玉林)外,其余产地样品中Cu和重金属总量均超出标准限量值。聚类分析能很好地将南方和北方产地分别聚为一类,表明地参中元素的含量差异跟产地密切相关,存在地域性特征。主成分综合评分结果显示样品S5(广西玉林)品质较优。该研究建立了准确分析评价不同产地地参中元素含量的方法,为地参的栽培引种、质量控制、安全性评价、产地判别和开发利用提供科学依据。
Twenty-two nutrient, inorganic, and heavy metal elements in Lycopus lucidus var. hirtus Regel from different habitats were determined and used to evaluate its quality and safety. The elements, including N, P, K, Ca, Mg, Na, Al, Fe, Zn, Mn, Cu, Ba, Ni, B, Cr, Mo, Pb, Co, Se, Cd, As, and Hg, were quantitatively determined using Kjeldahl method, hydride generation atomic fluorescence spectrometry, and inductively coupled plasma mass spectrometry. The data was analyzed by using SPSS 20 statistical analysis software through correlation, principal component, and habitat cluster analyses. The results showed that L. lucidus var. hirtus Regel from different habitats shared the same elements, but the contents were difference. Specifically, N and P contents were relatively high. Among inorganic elements, the average contents of K (21.98 mg/g), Ca (1.81 mg/g), and Mg (1.24 mg/g) were much higher than those of the other elements. Moreover, for heavy metals, Cu content was generally high, followed by Pb and As. The Cu and total heavy metal contents in the samples exceeded the standard limits, except for S2 (Dali, Yunnan), S3 (Tengchong, Yunnan) and S5 (Yulin, Guangxi). The southern and northern habitats formed into one cluster which indicate that the difference in elemental content in L. lucidus var. hirtus Regel relates closely to certain habitats and regional characteristics. The principal component comprehensive scores showed that the quality of sample S5 (Yulin, Guangxi) was superior compared to other samples. This study established an accurate method for the analysis and evaluation of certain elements in L. lucidus var. hirtus Regel from different habitats and provided a scientific basis for the cultivation, introduction, quality control, safety evaluation, origin discriminant, development and utilization of L. lucidus var. hirtus Regel.
[1] 赵国平,戴慎. 中药大辞典[M]. 上海: 上海科学技术出版社, 2006.
[2] 湖南省食品药品监督管理局. 湖南省中药材标准(2009年版)[M]. 长沙:湖南科学技术出版社, 2010:57.
[3] 王文净, 高春燕. 地参的研究发展现状[J]. 农产品加工, 2017(7): 60-62.
[4] LU Y H, TIAN C R, GAO C Y, et al. Nutritional profiles, phenolics, and DNA damage protective effect of Lycopus lucidus Turcz. root at different harvest times[J]. International Journal of Food Properties, 2017, 20(S3): 3 062-3 077.
[5] YANG X B, LV Y, TIAN L M, et al. Composition and systemic immune activity of the polysaccharides from an herbal tea(Lycopus lucidus Turcz)[J]. Agriculture and Food Chemistry, 2010, 58(10): 6 075-6 080.
[6] 彭涛, 王金梅, 张前军, 等. 硬毛地笋挥发性成分研究[J]. 天然产物研究与开发, 2012, 24(3): 342-344.
[7] REN Q, DING L, SUN S S, et al. Chemical identification and quality evaluation of Lycopus lucidus Turcz by UHPLC-Q-TOF-MS and HPLC-MS/MS and hierarchical clustering analysis[J]. Biomedical Chromatography Bmc, 2017,31(5): 3 867-3 869.
[8] 彭涛, 王微, 张前军, 等. 硬毛地笋化学成分研究[J]. 天然产物研究与开发, 2013, 25(6): 782-784;806.
[9] YU J Q, LEI J C, ZHANG X Q, et al. Anticancer, antioxidant and antimicrobial activities of the essential oil of Lycopus lucidus Turcz. var. hirtus Regel[J]. Food Chemistry, 2011, 126(4): 1 593-1 598.
[10] 熊伟, 谭德勇, 陈贵元, 等. 地参多糖对小鼠免疫功能影响的实验研究[J]. 时珍国医国药, 2011, 22(1): 11-13.
[11] 朱苗, 李刚凤, 谢勇, 等. 地参研究进展[J]. 广州化工, 2016, 44(17): 20-21;46.
[12] 许泳吉, 钟惠民, 杨波, 等. 野生植物地参中营养成分的测定[J]. 光谱实验室, 2003, 20(4): 528-529.
[13] 张荣平, 周宁娜, 罗天诰. 地参中氨基酸、粗蛋白和元素分析[J]. 中医药研究, 1998, 14(5): 54-55.
[14] 刘红, 陈燕芹, 张宇, 等. 微波辅助消解ICP-AES法测定地笋中18种元素[J]. 食品科技, 2014, 39(2): 270-273.
[15] 毕坤. 论矿物元素在农作物中的综合平衡效应[J]. 贵州地质, 1998(1): 61-70.
[16] 魏永生, 侯雅慧, 郭妮, 等. 微波消解-ICP-OES法测定4种常见绿叶蔬菜中的22种矿物元素[J]. 化学工程师, 2018, 32(10): 21-24.
[17] 谢敏, 汪洁, 张启立, 等. 甘肃不同产地黄管秦艽中无机元素的相关性和主成分分析[J]. 天然产物研究与开发, 2016, 28(9): 1 402-1 408.
[18] 严宝飞, 富莹雪, 宿树兰, 等. 不同产地黄芩茎叶无机元素的ICP-MS分析与评价[J]. 中草药, 2018, 49(22): 5 418-5 425.
[19] 袁建民, 何璐, 杨晓琼, 等. 香叶天竺葵不同部位中19种无机元素分布规律研究[J]. 江西农业学报, 2019, 31(11): 98-104.
[20] 陈宏降, 罗益远, 刘佳楠, 等. ICP-MS分析鱼腥草不同部位中无机元素差异[J]. 中国新药杂志, 2019, 28(22): 2 769-2 775.
[21] 王迁. 原子吸收光谱法测定洛川苹果中的微量元素[J]. 食品工业, 2019, 40(12): 308-310.
[22] 林海兰, 朱日龙, 于磊, 等. 水浴消解-原子荧光光谱法测定土壤和沉积物中砷、汞、硒、锑和铋[J]. 光谱学与光谱分析, 2020, 40(5): 1 528-1 533.
[23] 杨春花, 毕健梁, 周美丽, 等. 快速石墨消解-电感耦合等离子体质谱法测定海菜中13种无机元素[J]. 食品与发酵工业, 2019, 45(16): 281-285.
[24] 胡曙光, 苏祖俭, 蔡文华, 等. 石墨炉原子吸收法测定高盐食品中的铅及其干扰消除的研究[J]. 中国食品卫生杂志,2015, 27(4): 394-398.
[25] 中华人民共和国国家卫生和计划生育委员会. GB 5009.11—2014 食品安全国家标准 食品中总砷和无机砷的测定[S]. 北京:中国标准出版社, 2014.
[26] 中华人民共和国国家卫生和计划生育委员会. GB 5009.17—2014 食品安全国家标准 食品中总汞和有机汞的测定[S]. 北京:中国标准出版社, 2014.
[27] 李冰, 周剑雄, 詹秀春. 无机多元素现代仪器分析技术[J]. 地质学报, 2011, 85(11): 1 878-1 916.
[28] 熊冬华, 李刚凤, 杨天友, 等. 梵净山茶中18种矿物质元素的主成分、相关性和聚类分析[J]. 天然产物研究与开发, 2017, 29(11): 1 888-1 894.
[29] 姜峰, 倪穗, 岑冲锋, 等. 不同种源地参在宁波地区的适应性及多糖含量比较研究[J]. 中国野生植物资源, 2019, 38(5): 20-24.
[30] 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 5009.5—2016 食品安全国家标准 食品中蛋白质的测定[S]. 北京:中国标准出版社, 2016.
[31] 中华人民共和国商务部. WM/T 2—2004药用植物及制剂外经贸绿色行业标准[S]. 北京: 中国标准出版社, 2004.
[32] 曾波, 何忠俊, 毛昆明, 等. 药用植物施肥研究进展[J]. 云南农业大学学报, 2007(4): 587-592.