研究报告

DEHP胁迫下萝卜的亚显微结构及应答转录组分析

  • 冉咏兰 ,
  • 阚建全
展开
  • (西南大学 食品科学学院,重庆, 400715)
博士研究生(阚建全教授为通讯作者,E-mail:ganjq1965@163.com)

收稿日期: 2020-05-26

  修回日期: 2020-07-30

  网络出版日期: 2020-12-11

Submicroscopic structure and transcriptome analysis of radish in DEHP stress

  • RAN Yonglan ,
  • KAN Jianquan
Expand
  • (College of Food Science, Southwest University, Chongqing 400715, China)

Received date: 2020-05-26

  Revised date: 2020-07-30

  Online published: 2020-12-11

摘要

为探究邻苯二甲酸二辛酯(diethylhexyl phthalate,DEHP)胁迫下蔬菜差异基因的表达调控,以萝卜为试验材料,以空白处理为对照,在不同DEHP浓度(10、30、50 mg/kg)处理下,利用透射电镜观察萝卜块根亚显微结构,运用转录组高通量测序技术(RNA sequencing,RNA-Seq)技术对萝卜块根样品进行应答转录组分析。结果表明:DEHP胁迫会破坏萝卜块根细胞的结构,导致细胞壁加厚变形,部分断裂,线粒体嵴数减少,内部嵴断裂变模糊甚至解体,且污染浓度越大,破坏越严重。在应答转录组分析中,10、30和50 mg/kg 3个污染组分别获得52 707 576、47 261 670和48 651 920条Clean Reads,与对照组相比,分别产生9885、9 385和11 880个差异表达基因。基因本体(Gene Ontology,GO)分析结果显示:差异表达基因主要富集在代谢过程、刺激响应和催化活性等生物学过程中。京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)分析结果表明:差异表达基因主要参与苯丙氨酸代谢、亚油酸代谢、α-亚麻酸代谢、苯丙氨酸、酪氨酸和色氨酸的生物合成、甘氨酸、丝氨酸和苏氨酸代谢、苯丙酸生物合成、类胡萝卜素生物合成、半胱氨酸与蛋氨酸代谢等过程,其中丙氨酸-乙醛酸转氨酶、精胺合成酶、脂氧合酶和乙酰辅酶A酰基转移酶等通过半胱氨酸与蛋氨酸代谢、亚油酸代谢和α-亚麻酸代谢参与了萝卜的应答胁迫反应。以上数据将有助于揭示萝卜块根在DEHP胁迫下的应答机制和分子基础,以及相关抗性基因的挖掘和分子辅助育种等方面的研究。

本文引用格式

冉咏兰 , 阚建全 . DEHP胁迫下萝卜的亚显微结构及应答转录组分析[J]. 食品与发酵工业, 2020 , 46(21) : 98 -106 . DOI: 10.13995/j.cnki.11-1802/ts.024548

Abstract

To explore the expression regulation of differential genes in vegetables under the stress of diethylhexyl phthalate (DEHP), observation of the submicroscopic structure of radish roots was conducted using transmission electron microscope, also, analysis of the response transcriptome by RNA-Seq technology for radish treated by different concentrations (10, 30 and 50 mg/kg) of DEHP was applied. The results indicated that DEHP stress destroyed the structure of radish root cells, with thickened, deformed or partially fractured cell walls, and with less mitochondrial cristae as well as blurring and even disintegrating internal cristae. Higher concentration of DEHP led to more serious damage. In the analysis of response transcriptome, 52 707 576, 47 261 670 and 48 651 920 Clean Reads were obtained in three contaminated groups, which generated 9 885, 9 385 and 11 880 differentially expressed genes, respectively. Gene Ontology (GO) analysis showed that the differentially expressed genes were mainly concentrated in the biological processes of metabolism, stimulus response and catalytic activity. And Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the differentially expressed genes were mainly involved in the metabolism of phenylalanine, linoleic acid, α-linolenic acid, glycine, serine, threonine, cysteine and methionine, biosynthesis of phenylalanine, tyrosine, tryptophan, phenylpropionic acid and carotenoid. Alanine-glyoxylate transaminase, spermine synthase, lipoxygenase, acetyl-CoA C-acetyltransferase participated in the stress response of radish through metabolism of cysteine and methionine, linoleic acid as well as α-linolenic acid. To sum up, these data are helpful for revealing the mechanism and molecular basis of radish roots under DEHP stress, and for mining relevant resistance genes and molecular-assisted breeding.

参考文献

[1] 包崇来,汪精磊,胡天华,等.我国萝卜产业发展现状与育种方向探讨[J].浙江农业科学,2019,60(5):707-710.
[2] 国家统计局农村社会经济调查司.中国农村统计年鉴[M].北京:中国统计出版社,2016.
[3] DU J B,TANG Y L,LONG Z W,et al.Theoretical calculation of spectra of dibutyl phthalate and dioctyl phthalate[J].Russian Journal of Physical Chemistry A,2014,88(5):81-822.
[4] WANG J L,YE Y C,WU W Z.Comparison of di-n-methyl phthalate biodegradation by freeandimmobilized microbial cells[J].Biomedical and Environmental Sciences,2003,16(2):126-132.
[5] YANG G C,HUANG S C,JEN Y S,et al.Remediation of Phthalates in river sediment by integrated enhanced bioremediation and electrokinetic process[J].Chemosphere,2015,150:576-585.
[6] 蔡全英,莫测辉,李云辉,等.广州、深圳地区蔬菜生产基地土壤中邻苯二甲酸酯(PAEs)研究[J].生态学报,2005,25(2):283-288.
[7] 王丽霞.保护地邻苯二甲酸酯污染的研究[D].泰安:山东农业大学,2007.
[8] 张海光,孙国帅,孙磊,等.典型覆膜作物土壤中邻苯二甲酸酯污染的初步研究[J].中国环境监测,2013,29(4):60-63.
[9] 王凯荣,崔明明,史衍玺.农业土壤中邻苯二甲酸酯污染研究进展[J].应用生态学报,2013,24(9):2 699-2 708.
[10] 杨延杰,林多.邻苯二甲酸对蔬菜种子萌发和幼苗生长及根系形态的影响[J].北方园艺,2013,13:9-11.
[11] CHANG Q,GAO N N,ZHENG Y D,et al.Effects of di-(2-ethylhexyl) phthalate on root tips of Vicia faba seedings// 3rd International Conference on Bioinformatics and Biomedical Engineering[C].Beijin:IEEE Press,2009:1-3.
[12] 杨国义,张天彬,高淑涛,等.广东省典型区域农业土壤中邻苯二甲酸酯含量的分布特征[J].应用生态学报,2007,18(10): 2 308-2 312.
[13] ZENG F,CUI K,XIE Z,et al.Distribution of phthalate esters in urbansoils of subtropical city,Guangzhou,China[J].Journal of Hazardous Materials,2009,164(2/3):1 171-1 178.
[14] 杨婷,何明靖,杨志豪,等.邻苯二甲酸酯在三峡库区消落带非淹水期土壤中污染特征及健康风险[J].环境科学,2017,38 (10):4 187-4 193.
[15] MO C H,CAI Q Y,TANG S R,et al.Polycyclic aromatic hydrocarbons(PAHs) and phthalic acid esters (PAEs) in vegetables from ninefarms of the pearl river delta,south China[J].Contamination and Toxicology,2009,56 (2):181-189.
[16] 崔明明,王凯荣,王琳琳,等.山东省花生主产区土壤和花生籽粒中邻苯二甲酸酯的分布特征[J].应用生态学报,2013,24(12): 3 523-3 530.
[17] DONG H G,LIU T,HAN Z Q,et al.Determining time limits of continuous film mulchingand examining residual effects on cotton yield and soill properties[J].Journal of Environmental Biology,2015,36(3):677.
[18] 杨延杰 王晓伟 赵康,等.邻苯二甲酸对萝卜种子萌发、幼苗叶片膜脂过氧化及渗透调节物质的影响[J].生态学报,2013,33(19):6 074-6 080.
[19] WANG J,CHEN G,CHRISTIE P,et al.Occurrence and risk assessment of phthalateesters (PAEs) in vegetables and soils of suburban plastic film greenhouses[J].Science of the Total Environment,2015,523:129-137.
[20] WANG Z,GERSTEIN M,SNYDER M.RNA-Seq:A revolutionary tool for transcriptomics[J].Nature Reviews Genetics,2009,10(1):57-63.
[21] VAN LOON C D.The effect of water stress on potato growth,development,and yield[J].American Journal of Potato Research,1981,58(1):51-69
[22] 秦军红.马铃薯对水分的响应及膜下滴灌技术增产机制的研究[D].呼和浩特:内蒙古农业大学,2013.
[23] KANEHISA M,ARAKI M,GOTO S,et al.KEGG for linking genomes to life and the environment[J].Nucleic Acids Research,2008,36:480-484.
[24] SHOWALTER A M.Structure and function of plant cell wall proteins[J].Plant Cell,1993,5(1):9-23.
[25] 裴丽丽,郭玉华,徐兆师,等.植物逆境胁迫相关蛋白激酶的研究进展[J].西北植物学报,2012,32(5):1 052-1 061.
[26] 黄国存,田波.高等植物中的谷氨酸脱氢酶及其生理作用[J].植物学通报,2001,18(4):396-401.
[27] GURAMRIT S,GABRIEL P,GENE W Y,The clothes make the mRNA:Past and present trends in mRNP fashion[J].Annual Review of Biochemistry,2015,84:325-354.
[28] SUN X,JONES W T,RIKKERINK E H.GRAS proteins:The versatile roles of intrinsically disordered proteins in plant signalling[J].The Biochemical Journal,2012,442(1):1-12.
[29] ROXAS V P,LODHI S A,GARRETT D K,et al.Stress tolerance in transgenic tobacco seedlings that overexpress[J].Plant Cell Physiol,2000,41(11):1 229-1 234.
[30] SHI J,FU Z Y,PENG T,et al.Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response[J].Tree Physiology,2010,30(7):914-922.
[31] 金怡,刘合芹,汪得凯,等.植物光呼吸分子机制研究进展[J].中国农学通报,2011,27(3):233.
[32] FINNEGAN E,KOVAC K.Plant DNA methyltransferases[J].Plant Molecular Biology,2000,43(2-3):189-201.
[33] LORIMER G.An early arabidopsis demonstration.Resolving a few issues concerning photorespiration[J].Plant Physiology,2001,125(1):21.
[34] VERSLUES P E,KIM Y S,ZHU J K.Altered ABA,proline and hydrogen peroxide in an Arabidopsis glutamate:Glyoxylate aminotransferase mutant[J].Plant Molecular Biology,2007,64(1-2):205-217.
[35] 吴凡,徐德芳,宋少帅,等.小麦丙氨酸-乙醛酸转氨酶基因(TaADGT2)的克隆/生物信息学预测及表达分析[J].麦类生物学报,2019,3(8):895-902.
[36] MARTIN T J.Metabolism and function of poly amines in plants:Recent development (new approaches)[J].Plant Growth Regulation,2001.34(1):135-148.
[37] ESPASANDIN F D, MAIALE S J,CALZADILLA P,et al.Transcriptional regulation of 9-cis-epoxycarotenoid dioxygenase (NCED) gene by putrescine accumulation positively modulates ABA synthesis and drought tolerance in Lotus tenuis plants[J].Plant Physiology and Biochemistry,2014,16(1):29-35.
[38] WI S J,KIM W T,PARK K Y.Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants[J].Plant Cell Reports,2006,25(10):1 111-1 121.
[39] TANOU G,ZIOGAS V,BELGHAZI M,et al.Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress[J].Plant Cell & Environment,2013,37(4):846-885.
[40] NAYDENOV M,BAEV V,APOSTOLOVA E,et al.High-temperature effect on genes engaged in DNA methylation and affected by DNA methylation in Arabidopsis[J].Plant Physiol Biochem,2015,87:102-108.
[41] DING H,GAO J,QIN C,et al.The dynamics of DNA methylation in maize roots under Pb stress[J].Int J Mol Sci,2014,15(12):23 537-23 554.
[42] YI H,LI L.DNA methylation changes in response to sulfur dioxide stress in Arabidopsis plants[J].Procedia Environmental Sciences,2013,18:37-42.
[43] FINNEGAN E J,PEACOCK W J,DENNIS E.DNA methylation,a key regulation of plant development and other processes[J].Curr Opion Genet Dev,2000,10:217-223.
[44] ENDLER A,KESTEN C,SCHNEIDER R,et al.A mechanism for sustained cellulose synthesis during salt stress[J].Cell,2015,162(6):1 353-1 364.
[45] CROFT K P C,JUTTNER F,SLUSARENKO A J.Volatile product of the lipoxygenase pathway evolved from Phaseolus vulgaris(L.) leaves inoculated with Pseudomonas syringae pv phaseolicol[J].Plant Physiol,1993,101:13-24.
[46] NOORDERMEER M A,DIJKEN A J H V,SMEEKENS S C M,et al.Characterization of three cloned and expressed 13-hydroperoxide lyase isoenzymes from alfalfa with unusual N-terminal sequences and different enzyme kinetics[J].FEBS Lett,2000,267:2 473-2 482.
[47] 王延莉,曹阳,梁祎凡,等.乙酰辅酶 A 酰基转移酶 1 基因研究进展[J].中国畜牧,2019,55(10):42-46.
[48] 蒋科技,皮妍,侯嵘,等.植物内源茉莉酸类物质的生物合成途径及其生物学意义[J].植物学报,2010,45(2):137-148.
[49] 宋云,李林宜,卓凤萍,等.茉莉酸信号传导在植物抗逆性方面研究进展[J].中国农业科技导报,2015,17(2):17-24.
[50] DONG W, WANG M, XU F, et al.Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging[J].Plant Physiology,2013,161(3):1 217-1 228.
[51] 许奕, 徐碧玉,宋顺,等.香蕉茉莉酸合成关键酶基因 MaOPR 的克隆和表达分析[J].园艺学报,2013,2:237-246.
[52] 田英,刘廷旭,赵彩平,等.桃脂氧合酶基因的原核表达分析[J].西北植物学报,2011,3(3):499-503.
[53] HU T,ZENG H,HU Z,et al.Overexpression of the tomato 13-lipoxygenase gene tomloxD increases generation of endogenous jasmonic acid and resistance to cladosporium fulvumand high temperature[J].Plant Molecular Biology Reporter,2013,31(5):1 141-1 149.
[54] SCHERERG F E,ARNOLD B.Inhibitors of animal phospholipase A2 enzymes are selective inhibitors of auxin-de-pendent growth:implications of for auxin-induced signal transduction[J].Planta,1997,202:462-469.
[55] CHANDRA S,HEINSTEIN P F,LOW P S.Activation of phospholipase A by plant defense elicitors[J].Plant Physiol,1996,110:979-986.
[56] CHAPMAN K D.Phospholipase activity during plant growth and development and in response to environmental stress.Trends[J].Plant Sci,1998,3:131-140.
[57] YOUNG S,WANG X,LEACH J E.Changes in the plasma membrane distribution of rice phospholipase D during resistant interaction with Xanthomonas oryzae pv[J].Plant Cell,1996,8:1 079-1 090.
文章导航

/