研究报告

克雷伯氏菌发酵棉秆水解糖液产丁二酸的代谢特性

  • 刘攀攀 ,
  • 崔志勇 ,
  • 王子坤 ,
  • 张琴
展开
  • 1(塔里木大学 生命科学学院,新疆 阿拉尔,843300);
    2(塔里木大学,分析测试中心,新疆 阿拉尔,843300);
    3(塔里木大学,塔里木盆地生物资源保护利用兵团重点实验室,新疆 阿拉尔,843300)
硕士(张琴教授为通讯作者,E-mail:jhtabszq@163.com)

收稿日期: 2020-05-27

  修回日期: 2020-06-15

  网络出版日期: 2020-12-11

基金资助

国家自然科学基金资助项目(21666034)

Metabolic characteristics of succinic acid production from cotton stalk hydrolysate by Klebsiella strains

  • LIU Panpan ,
  • CUI Zhiyong ,
  • WANG Zikun ,
  • ZHANG Qin
Expand
  • 1(College of Life Science,Tarim University,Alaer 843300,China);
    2(Analysis and Testing Center,Tarim University,Alaer 843300,China);
    3(Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin,Tarim University,Alaer 843300,China)

Received date: 2020-05-27

  Revised date: 2020-06-15

  Online published: 2020-12-11

摘要

为研究7株克雷伯氏菌发酵棉秆水解糖液产丁二酸的关键途径及其竞争支路的代谢流分布,实现对菌株高效发酵棉秆水解糖液产丁二酸过程的有效调控。采用7株克雷伯氏菌发酵棉秆水解糖液,监测了各菌株在6、12、18、24、30和36 h的丁二酸含量、葡萄糖和木糖含量、琥珀酸脱氢酶和磷酸烯醇式丙酮酸羧化酶活性及胞内外丙酮酸和乳酸浓度,阐明了这些菌株发酵产丁二酸的代谢特性。结果表明,7株克雷伯氏菌在6~36 h内均能有效发酵棉秆水解糖液产丁二酸,且其发酵产丁二酸的时间集中于6~12 h,菌株WL1309和WL1312在发酵6 h即获得了较高的丁二酸产量(>42 g/L),其余5株细菌在发酵12 h的丁二酸含量均达峰值。至发酵结束(36 h),这7株菌的葡萄糖利用率均高于85%,木糖利用率均高于90%。各菌株琥珀酸脱氢酶活性均较低,磷酸烯醇式丙酮酸羧化酶主要在发酵6~12 h及24~36 h对丁二酸合成的影响较强。丙酮酸节点可能在发酵中后期(24~36 h)加速了丁二酸的转化,引起丁二酸合成支路代谢流分布的降低,而乳酸对其代谢流分布的影响较弱。因此,这7株克雷伯氏菌都具有高效发酵棉秆水解糖液产丁二酸的潜力,在其发酵过程中,对其关键酶和主要节点代谢物进行调控可在一定程度上实现丁二酸的高产。

本文引用格式

刘攀攀 , 崔志勇 , 王子坤 , 张琴 . 克雷伯氏菌发酵棉秆水解糖液产丁二酸的代谢特性[J]. 食品与发酵工业, 2020 , 46(22) : 8 -13 . DOI: 10.13995/j.cnki.11-1802/ts.024572

Abstract

To clarify the key pathways and the metabolic flux distribution of the competing branches of seven Klebsiella strains duringcotton stalk hydrolyzed sugar liquid fermentation to produce succinic acid,and to achieve high-efficiency regulation,the contents of succinic acid,glucose and xylose,the activities of succinic acid dehydrogenase and phosphoenolpyruvate carboxylase,and the concentrations of pyruvate and lactic acid of each strain at 6,12,18,24,30 and 36 h were monitored,and the metabolic characteristics were clarified.The results showed that all Klebsiella strains could effectively ferment cotton stalk to produce succinic acid in 6-36 h,and the fermentation time of succinic acid production was mostly in 6-12 h.WL1309 and WL1312 obtained higher succinic acid production (>42 g/L) at 6 h,and the succinic acid content of the other strains peaked at 12 h of fermentation.By the end of fermentation (36 h),the glucose utilization rate of all strains was higher than 85%,and the utilization rate of xylose was higher than 90%.The succinate dehydrogenase activity of each strain was low.The phosphoenolpyruvate carboxylase mainly affected the synthesis of succinic acid at 6-12 h and 24-36 h.The pyruvate node may accelerate the conversion of succinic acid in the middle and late stages of fermentation (24~36 h),causing the decrease of the metabolic flux distribution of the succinic acid synthesis branch,while the influence of lactic acid on the metabolic flux distribution was weak.During the fermentation process,the high yield of succinic acid can be achieved to a certain extent by regulating the key enzymes and major metabolites in the fermentation process.

参考文献

[1] LIU R,LIANG L,CAO W,et al.Succinate production by metabolically engineered Escherichia coli,using sugarcane bagasse hydrolysate as the carbon source[J].Bioresource Technology,2013,135(3):574-577.
[2] SALVACHU'A D,SMITH H,JOHN P C S,et al.Succinic acid production from lignocellulosic hydrolysate by Basfia succinic-iproducens[J].Bioresource Technology,2016,214:558-566.
[3] WEEPY T A,HOLLADAY J,WHITE J F,et al.Top Value Added Chemicals From Biomass:I.Results of Screening for Potential Candidates from Sugars and Synthesis Gas[N].U S:National Renewable Energy Laboratory,2004.
[4] 金城.丁二酸发酵新进展[J].微生物学通报,2015,42(9):1 832.
[5] YU Y,HONG Y,WANG Y,et al.Mecaptosuccinic acid modified gold nanoparticles as colorimetric sensor for fast detection and simultaneous identification of Cr3+[J].Sensors &Actuators B Chemical,2017,239:865-873.
[6] BRETZ K.Succinic acid production in fed-batch fermentation of Anaerobiospirillum succiniciproducens using glycerol as carbon source[J].Chemical Engineering &Technology,2015,38(9):1 659-1 664.
[7] EBENEZER D,DESHPANDE A P,HARIDOSS P.Cross-linked poly (vinyl alcohol)/sulfosuccinic acid polymer as an electrolyte/electrode material for H2-O2 proton exchange membrane fuel cells[J].Journal of Power Sources,2016,304:282-292.
[8] SHELDON R A.Green and sustainable manufacture of chemicals from biomass:State of the art[J].Green Chemistry,2014,16(3):950-963.
[9] 于建荣,毛开云,陈大明,等.生物基丁二酸产业化发展及态势分析[J].生物产业技术,2014(1):42-46.
[10] CHENG K K,ZHAO X B,ZENG J,et al.Downstream processing of biotechnological produced succinic acid[J].Appl Microbiol Biotechnol,2012,95(4):841-850.
[11] CHENG K K,WANG G Y,ZENG J,et al.Improved succinate production by metabolic engineering[J].BioMed Res Inter,2013,94(7):S38 790.
[12] CHENG K K,LIU Q,ZHANG J A,et al.Improved 2,3-butanediol production from corncob acid hydrolysate by fed-batch fermentation using Klebsiella oxytoca[J].Process Biochem,2010,45(4):613-616.
[13] JIANG L Q,FANG Z,GUO F,et al.Production of 2,3-butanediol from acid hydrolysates of jatropha hulls with Klebsiella oxytoca[J].Bioresour Technol,2012,107:405-410.
[14] CHENG K K,WU J,WANG G Y,et al.Effects of pH and dissolved CO2 level on simultaneous production of 2,3-butanediol and succinic acid using Klebsiella pneumoniae[J].Bioresource Technology,2013,135:500-503.
[15] LI Q,YANG M H,WANG D,et al.Efficient conversion of crop stalk wastes into succinic acid production by Actinobacillus succinogenes[J].Bioresour Technol,2010,101(9):3 292-3 294.
[16] LI Q,LEI J D,ZHANG R Y,et al.Efficient decolorization and deproteinization using uniform polymer microsp-heres in the succinic acid biorefinery from bio-waste cotton (Gossypium hirsutum L.) stalks[J].Bioresour Technol,2013,135:604-609.
[17] 张琴,李艳宾,曹亚龙.棉秆稀酸水解及微生物共发酵生产单细胞蛋白工艺优化研究[J].食品科学,2011,32(5):192-197.
[18] VARGHESE H T,PANICKER C Y,PHILIP D,et al.IR,Raman and SERS spectra of 3,5-dinitrosalicylic acid[J].Journal of Raman Spectroscopy,2010,38(3):323-331.
[19] PHAM P J,HERNANDEZ R,FRENCH W T,et al.A spectrophotometric method for quantitative determinati on of xylose in fermentation medium[J].Biomass &Bioenergy,2011,35(7):2 814-2 821.
[20] CAO Zhifa,CHEN Weicai,YANG PeiPei,et al.Advances of succinate dehydrogenase mutation in cancers[J].Progress in Biochemistry and Biophysics,2017,44(1):31-43.
[21] WANG D,LI Q,MAO Y,et al.High-level succinic acid production and yield by lactose-induced expression of phosphoenolpyruvate carboxylase in ptsG mutant Escherichia coli[J].Applied Microbiology &Biotechnology,2010,87(6):2 025-2 035.
[22] LITSANOV B A,KABUS A,BROCKER M,et al.Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum[J].Microb Biotechnol,2012,5(1):116-128.
[23] BRETZ K,KABASCI S.Feed-control development for succinic acid production with Anaerobiospirillum succini ciproducens[J].Biotechnology Bioengineering,2012,109(5):1 187-1 192.
[24] WANG C C,ZHU L W,LI H M,et al.Performance analyses of a neutralizing agent combination strategy for the production of succinic acid by Actinobacillus succinogenes ATCC55618[J].Bioprocess Biosyst Eng,2012,35(4):659-664.
[25] THAKKER C,SAN K Y,BENNET G N.Production of succinic acid by engineered E.colistrains using soybean carbohydrates as feedstock under aerobic fermentation conditions[J].Bioresource Technology,2012,130:398-405.
文章导航

/