研究报告

调控质粒拷贝数优化酿酒酵母异源合成真菌聚酮10,11-dehydrocurvularin

  • 严豪 ,
  • 王志远 ,
  • 庞子萱 ,
  • 林苹鑫 ,
  • 吴疆 ,
  • 李业 ,
  • 白仲虎
展开
  • 1(江南大学 生物工程学院,江苏 无锡,214122)
    2(粮食发酵工艺与技术国家工程实验室(江南大学),江苏 无锡,214122)
硕士研究生(李业讲师和白仲虎教授为共同通讯作者,E-mail:yeli0622@jiangnan.edu.cn;baizhonghu@jiangnan.edu.cn)

收稿日期: 2021-03-19

  修回日期: 2021-03-28

  网络出版日期: 2021-08-20

基金资助

江南大学青年基金(JUSRP12057)

Optimized heterologous production of 10,11-dehydrocurvularin in Saccharomyces cerevisiae by tuning plasmid copy number

  • YAN Hao ,
  • WANG Zhiyuan ,
  • PANG Zixuan ,
  • LIN Pingxin ,
  • WU Jiang ,
  • LI Ye ,
  • BAI Zhonghu
Expand
  • 1(School of Biotechnology, Jiangnan University, Wuxi 214122, China)
    2(National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122,China)

Received date: 2021-03-19

  Revised date: 2021-03-28

  Online published: 2021-08-20

摘要

10,11-dehydrocurvularin是一种来源于真菌Aspergillus terreus的一种具有多种生物活性的聚酮化合物。课题组前期的工作中以酿酒酵母(Saccharomyces cerevisiae)为宿主细胞,通过异源表达来源于A.terreus的还原性聚酮合酶(highly-reducing polyketide synthase,hrPKS)与非还原性聚酮合酶(non-reducing PKS,nrPKS)成功实现了10,11-dehydrocurvularin的合成。该研究通过调控质粒拷贝数,研究不同酶通量对多酶系统的最终产物产量的影响,以优化10,11-dehydrocurvularin在酿酒酵母中的产量。该研究以遗传霉素和潮霉素B两种抗生素抗性为选择压,通过截短抗性基因启动子长度,降低其单位拷贝抗性能力,经使用抗生素胁迫即可控制质粒拷贝数。结果表明,在一定抗生素浓度胁迫下,荧光及其质粒拷贝数与截短抗性基因的启动子长度呈负相关。将该系统分别应用至hrPKS和nrPKS,在遗传霉素与潮霉素B质量浓度都为300 mg/L的合成培养基中发酵2 d后, 在构建的不同酶通量系统中,有不同程度的产量优化,其中启动子截短长度分别为全长和100 bp时,得到最优组合的产量为0.359 mg/L,为对照组的3.63倍。该研究表明在多酶系统中,通过组合优化酶表达量能够优化目标产物产量,但并非表达量越高效果越好,该研究将有利于今后非天然聚酮化合物的发现及优化生产。

本文引用格式

严豪 , 王志远 , 庞子萱 , 林苹鑫 , 吴疆 , 李业 , 白仲虎 . 调控质粒拷贝数优化酿酒酵母异源合成真菌聚酮10,11-dehydrocurvularin[J]. 食品与发酵工业, 2021 , 47(14) : 63 -69 . DOI: 10.13995/j.cnki.11-1802/ts.027402

Abstract

10,11-dehydrocurvularin is a polyketide initially isolated from Aspergillus terreus, which shows potent multiple biological activities. In previous work of our group, we successfully cloned and expressed the corresponding highly-reducing PKS (hrPKS) gene and non-reducing PKS (nrPKS) gene in Saccharomyces cerevisiae strain BJ5464-NpgA, which enabled heterologous biosynthesis of 10,11-dehydrocurvularin in this model eukaryotic system. To enhance the production of 10,11-dehydrocurvularin, we optimized the expression levels of hrPKS and nrPKS by regulating the plasmid copy numbers. As for the dominant selection markers (KanR and HgyR), promoter truncation from 5' end of the marker genes was positively correlated with the increase of plasmid copy numbers, when 300 mg/L of geneticin and/or hygromycin B were applied. We hence built up the combination of hrPKS and nrPKS with different copy numbers by placing hrPKS and nrPKS genes onto KanR truncated plasmids and HgyR truncated plasmids, respectively. After two days of fermentation in the synthetic media containing both geneticin and hygromycin B, the optimal combination with max truncation of KanR promoter and 100 bp truncation of HygR promoter resulted in the highest titer of 10,11-dehydrocurvularin at 0.359 mg/L, which was 3.63-fold compared to that of the control with full-length promoters for both KanR and HygR. These results showed that in a multi-enzyme system, the combined optimization of enzyme expression could improve the yield of the target product, but not that the higher the expression, the better the effect. This study could serve as the basis for identification and optimization of unnatural polyketides in future.

参考文献

[1] WANG B, ZHAO H.Unleashing the power of energy storage:Engineering beta-oxidation pathways for polyketide production[J].Synthetic and Systems Biotechnology, 2020, 5(1):21-22.
[2] HUSSAIN H, AL-SADI A M, SCHULZ B, et al.A fruitful decade for fungal polyketides from 2007 to 2016:Antimicrobial activity, chemotaxonomy and chemodiversity[J].Future Medicinal Chemistry, 2017, 9(14):1 631-1 648.
[3] ZHANG C B, KE D, DUAN Y J, et al.The combinatorial biosynthesis of “Unnatural” products with polyketides[J].Transactions of Tianjin University, 2018, 24(6):501-512.
[4] XU Y Q, ZHOU T, ZHANG S W, et al.Diversity-oriented combinatorial biosynthesis of benzenediol lactone scaffolds by subunit shuffling of fungal polyketide synthases[J].Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(34):12 354-12 359.
[5] SANTAGATA S, XU Y M, WIJERATNE E M, et al.Using the heat-shock response to discover anticancer compounds that target protein homeostasis[J].ACS Chemical Biology, 2012, 7(2):340-349.
[6] SKELLAM E.Strategies for engineering natural product biosynthesis in fungi[J].Trends in Biotechnology, 2019, 37(8):416-427.
[7] SUNDARAM S, HEINE D, HERTWECK C.Polyketide synthase chimeras reveal key role of ketosynthase domain in chain branching[J].Nature Chemical Biology, 2015, 11(12):949-951.
[8] 张熙, 李国辉, 周胜虎, 等.酿酒酵母异源合成己二酸[J].食品与发酵工业, 2020, 46(7):1-9.
ZHANG X, LI G H, ZHOU S H, et al.Production of adipic acid in recombinant Saccharomyces cerevisiae[J].Food and Fermentation Industries, 2020, 46(7):1-9.
[9] HAN J Y, SEO S H, SONG J M, et al.High-level recombinant production of squalene using selected Saccharomyces cerevisiae strains[J].Journal of Industrial Microbiology & Biotechnology, 2018, 45(4):239-251.
[10] 杨国华, 马光喜.国内生物分子学技术应用于酿酒酵母的研究进展[J].酿酒科技, 2014, 245(11):77-80;83.
YANG G H, MA G X.Domestic research progress in the application of molecular biology technology to Saccharomyces cerevisiae[J].Liquor-making Science&Technology, 2014, 245(11):77-80;83.
[11] 王家旺, 邓利廷, 孙健, 等, 产2,3-丁二醇的酿酒酵母菌的筛选及其鉴定[J].中国酿造, 2020, 39(1):21-25.
WANG J W, DENG L T, SUN J, et al.Screening and identification of 2,3-butanediol-producing Saccharomyces cerevisiae[J].China Brewing, 2020, 39(1):21-25.
[12] YU D Y, XU F C, ZI J C, et al.Engineered production of fungal anticancer cyclooligomer depsipeptides in Saccharomyces cerevisiae[J].Metabolic Engineering, 2013, 18(1):60-68.
[13] LIAN J Z, JIN R, ZHAO H M.Construction of plasmids with tunable copy numbers in Saccharomyces cerevisiae and their applications in pathway optimization and multiplex genome integration[J].Biotechnology and Bioengineering, 2016, 113(11):2 462-2 473.
[14] MOON H Y, LEE D W, SIM G H, et al.A new set of rDNA-NTS-based multiple integrative cassettes for the development of antibiotic-marker-free recombinant yeasts[J].Journal of Biotechnology, 2016, 233:190-199.
[15] XU Y, ESPINOSA-ARTILES P, SCHUBERT V, et al.Characterization of the biosynthetic genes for 10,11-dehydrocurvularin, a heat shock response-modulating anticancer fungal polyketide from Aspergillus terreus[J].Applied and Environmental Microbiology, 2013, 79(6):2 038-2 047.
[16] 闫慧芳, 丁明珠, 元英进.诱导型和组成型启动子对酿酒酵母合成紫杉二烯的影响[J].化工学报, 2013, 64(11):4 167-4 174.
YAN H F, DING M Z, YUAN Y J.Effects of inducible and constructive promoters on production of taxadiene in Saccharomyces cerevisiae[J].CJESC Journal, 2013, 64(11):4 167-4 174.
[17] SHI S B, LIANG Y Y, ANG E L, et al.Delta integration CRISPR-Cas (Di-CRISPR) in Saccharomyces cerevisiae[J].Methods in Molecular Biology, 2019, 1 927:73-91.
[18] 庄强,钱程,刘立.SYBR+Green实时定量PCR检测外源基因拷贝数[J].浙江理工大学学报, 2010, 27(1):125-129.
ZHUANG Q, QIAN C, LIU L.Establishment of SYBR green-base quantitative real-time PCR assay for determining transgene copy number in genome[J].Journal of Zhejiang Sci-Tech University, 2010, 27(1):125-129.
[19] XU Y, ZHOU T, ESPINOSA-ARTILES P, et al.Insights into the biosynthesis of 12-membered resorcylic acid lactones from heterologous production in Saccharomyces cerevisiae[J].ACS Chemical Biology, 2014, 9(5):1 119-1 127.
[20] 窦速林, 刘卫贞, 侯喜林, 等.pLA-PEDV-S1质粒拷贝数与发酵重组乳酸菌S1表达量之间的相关性研究[J].微生物学杂志, 2018, 38(5):27-33.
DOU S L, LIU W Z, HOU X L, et al.Reciprocity pLA-PEDV-S1 plasmid copy number and S1 expression level of recombinant lactobacilli in fermentation[J].Journal of Microbiology,2018, 38(5):27-33.
[21] SEKUROVA O N, SCHNEIDER O, ZOTCHEV S B.Novel bioactive natural products from bacteria via bioprospecting, genome mining and metabolic engineering[J].Microbial Biotechnology, 2019, 12(5):828-844.
文章导航

/