该文研究了酿酒酵母中编码丙酮酸脱羧酶的基因PDC5的缺失对2-苯乙醇合成的影响,并将其应用于2-苯乙醇高产菌株的代谢改造策略。首先利用CRISPR/Cas9双质粒敲除体系构建pdc5△突变株,通过优化过的培养条件进行摇瓶发酵,发现基因PDC5的缺失能够促进酵母合成2-苯乙醇。分别表达芳香族转氨酶Aro8p和Aro9p,发现在缺失Aro9p的突变株中过表达Aro8p能够促进2-苯乙醇的合成。由此构建了重组菌株RM59-810(pdc5△aro9△ PTPI-ARO8-TTT PTPI-ARO10-TTT),在6.7 g/L L-苯丙氨酸培养基中培养120 h后2-苯乙醇的产量为3.85 g/L,摩尔转化率为0.67 mol/mol,是对照菌株的1.33倍,得率为0.5 g/g L-苯丙氨酸。该文为加强酿酒酵母合成2-苯乙醇的能力提供了一种新的代谢工程改造策略,为研究丙酮酸脱羧酶Pdc5p可能存在的调控作用提供了依据。
As an important aromatic alcohols with favorable flavor and superior property, 2-phenylethanol has been widely used in food, medicine, and chemical industry. In this study, the deletion of phenylpyruvate decarboxylase gene PDC5 was found to improve the synthesis of 2-phenylethanol, and related metabolic strategy of the Ehrlich pathway was rational reconstructed in Saccharomyces cerevisiae for further product-enhancement. Strain RM22 (pdc5△) was obtained using CRISPR/Cas9, and improved 2-phenylethanol production was observed in the optimized culture conditions. Additionally, by expressing aromatic transaminase Aro8p and Aro9p respectively, we found that overexpressing of Aro8p in aro9-deleted strain was an efficient strategy to increase 2-phenylethanol production. To further improve the production of 2-phenylethanol, metabolic engineered strain RM-59810 (pdc5△aro9△PTPI-ARO8-TTT PTPI-ARO10-TTT) was constructed, resulting in 3.85 g/L of 2-phenylethanol from 6.7 g/L phenylalanine after 120 h, and the molar conversion rate was 0.67 mol/mol, which was 1.33-fold than that of the control strain, with a yield of 0.5 g/g L-phenylalanine. In this study, a new efficient strategy was provided to improve 2-phenylethanol production in S. cerevisiae, and also provided a primary foundation for studying the possible regulatory effects of pyruvate decarboxylase Pdc5p.
[1] HUA D L, XU P.Recent advances in biotechnological production of 2-phenylethanol[J].Biotechnology Advances, 2011, 29(6):654-660.
[2] WANG Y Q, ZHANG H, LU X Y, et al.Advances in 2-phenylethanol production from engineered microorganisms[J].Biotechnology Advances, 2019, 37(3):403-409.
[3] GU Y, MA J, ZHU Y, et al.Refactoring Ehrlich pathway for high-yield 2-phenylethanol production in Yarrowia lipolytica[J].ACS Synthetic Biology, 2020, 9(3):623-633.
[4] 牛明福,李亚恒,陈金帅.马克斯克鲁维酵母生物转化2-PE工艺优化及耐高温特性分析[J].食品与发酵工业, 2018, 44(2):15-20.
NIU M F,LI Y H,CHEN J S, et al.Optimization and characterization of 2-phenylethanol bioconversion by thermotolerant yeast Kluyveromyces marxianus[J].Food and Fermentation Industries, 2018, 44(2):15-20.
[5] HUANG C J, LEE S L, CHOU C C.Production of 2-phenylethanol, a flavor ingredient, by Pichia fermentans L-5 under various culture conditions[J].Food Research International, 2001, 34:277-282.
[6] KIM B, CHO B R, HAHN J S.Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway[J].Biotechnology and Bioengineering, 2014, 111(1):115-124.
[7] JIN D, GU B, XIONG D, et al.A Transcriptomic analysis of Saccharomyces cerevisiae under the stress of 2-phenylethanol[J].Current Microbiology, 2018, 75(8):1 068-1 076.
[8] ETSCHMANN M M, BLUEMKE W, SELL D, et al.Biotechnological production of 2-phenylethanol[J].Applied Microbiology and Biotechnology, 2002, 59(1):1-8.
[9] IRAQUI I, VISSERS S, CARTIAUX M, et al.Characterisation of Saccharomyces cerevisiae ARO8 and ARO9 genes encoding aromatic aminotransferases I and II reveals a new aminotransferase subfamily[J].Molecular and General Genetics, 1998, 257:238-248.
[10] BULFER S L, BRUNZELLE J S, TRIEVEL R C.Crystal structure of Saccharomyces cerevisiae Aro8, a putative alpha-aminoadipate aminotransferase[J].Protein Science, 2013, 22(10):1 417-1 424.
[11] KIM S, LEE K, BAE S J, et al.Promoters inducible by aromatic amino acids and gamma-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae[J].Applied Microbiology and Biotechnology, 2015, 99(6):2 705-2 714.
[12] LEE K, SUNG C, KIM B G, et al.Activation of Aro80 transcription factor by heat-induced aromatic amino acid influx in Saccharomyces cerevisiae[J].Biochemical and Biophysical Research Communications, 2013, 438(1):43-47.
[13] LEE K, HAHN J S.Interplay of Aro80 and GATA activators in regulation of genes for catabolism of aromatic amino acids in Saccharomyces cerevisiae[J].Molecular Microbiology, 2013, 88(6):1 120-1 134.
[14] CHOO J H, HAN C, LEE D W, et al.Molecular and functional characterization of two pyruvate decarboxylase genes, PDC1 and PDC5, in the thermotolerant yeast Kluyveromyces marxianus[J].Applied Microbiology and Biotechnology, 2018, 102(8):3 723-3 737.
[15] BRION C, AMBROSET C, DELOBEL P.Deciphering regulatory variation of THI genes in alcoholic fermentation indicate an impact of Thi3p on PDC1 expression[J].BMC Genomics, 2014, 15(1 085):1-11.
[16] VURALHAN Z, LUTTIK M A, TAI S L, et al.Physiological characterization of the ARO10-dependent, broad-substrate-specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae[J].Applied and Environmental Microbiology, 2005, 71(6):3 276-3 284.
[17] ROMAGNOLI G, LUTTIK M A, KOTTER P, et al.Substrate specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae[J].Applied and Environmental Microbiology, 2012, 78(21):7 538-7 548.
[18] MULLER E H, RICHARDS E J, NORBECK J.Thiamine repression and pyruvate decarboxylase autoregulation independently control the expression of the Saccharomyces cerevisiae PDC5 gene[J].FEBS Letters, 1999, 449:245-250.
[19] YIN S, ZHOU H, XIAO X, et al.Improving 2-phenylethanol production via Ehrlich pathway using genetic engineered Saccharomyces cerevisiae strains[J].Current Microbiology, 2015, 70(5):762-767.
[20] WANG Z Y, JIANG M Y, GUO X N, et al.Reconstruction of metabolic module with improved promoter strength increases the productivity of 2-phenylethanol in Saccharomyces cerevisiae[J].Microbial Cell Factories, 2018, 17(1):60.
[21] STARK D, KORNMANN H, MUNCH T, et al.Novel type of in situ extraction:Use of solvent containing microcapsules for the bioconversion of 2-phenylethanol from L-phenylalanine by Saccharomyces cerevisiae[J].Biotechnology and Bioengineering, 2003, 83(4):376-385.
[22] MEI J F, MIN H, LIU Z M.Enhanced biotransformation of L-phenylalanine to 2-phenylethanol using an in situ product adsorption technique[J].Process Biochemistry, 2009, 44(8):886-890.
[23] VURALHAN Z, MORAIS M, TAI S, et al.Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae[J].Applied and Environmental Microbiology, 2403, 69(8):4 534-4 541.
[24] NOSAKA K, ESAKI H, ONOZUKA M, et al.Facilitated recruitment of Pdc2p, a yeast transcriptional activator, in response to thiamin starvation[J].FEMS Microbiology Letters, 2012, 330(2):140-147.