α-香树脂醇、羽扇豆醇和计曼尼醇作为重要的五环三萜化合物,具有抗炎、抗肿瘤、抗病毒等多种药理学功能。为构建五环三萜酿酒酵母细胞工厂,该研究运用CRISPR/Cas9技术,分别将编码长春花来源的α-香树脂醇合酶、洋甘草来源的羽扇豆醇合酶和羊蹄甲来源的计曼尼醇合酶的基因整合至酿酒酵母基因组上,获得工程菌株S01、S02和S03。工程菌株在YPG培养基中发酵48 h,S01能生产50.7 mg/L α-香树脂醇,S02羽扇豆醇产量达到45.8 mg/L,S03计曼尼醇产量为17.6 mg/L,表明五环三萜酿酒酵母细胞工厂构建成功。进一步在S01、S02和S03中过表达甲羟戊酸途径中的关键酶:鲨烯环氧酶,增加前体物质2,3-氧化鲨烯的供应,最终α-香树脂醇、羽扇豆醇和计曼尼醇产量分别达96.3、91.6和38.7 mg/L。该研究建立了三萜微生物合成平台,为构建五环三萜酸及其衍生物酿酒酵母细胞工厂奠定了理论和技术基础。
α-Amyrin, lupeol and germanicol are important pentacyclic triterpenoids, with excellent anti-inflammatory, anti-tumor, anti-virus activities and properties. To construct cell factories for the production of pentacyclic triterpenoids, genes encoding Catharanthus roseus α-amyrin synthase (CrαAS), Glycyrrhiza glabra lupeol synthase (GgLUS) and Bauhinia forficata germanicol synthase (BfGES) were separately integrated into the Saccharomyces cerevisiae chromosome using CRISPR/Cas9 technology, resulting in engineered strains S01, S02, and S03. After 48 h of fermentation in YPG medium, 50.7 mg/L α-amyrin, 45.8 mg/L lupeol and 17.6 mg/L germanicol were achieved with strain S01, S02, and S03, respectively. This demonstrated the successful construction of the S. cerevisiae cell factories for pentacyclic triterpenoids production. To increase the supply of precursor 2,3-oxidosqualene, the squalene epoxidase (ERG1), a key enzyme in the mevalonic acid (MVA) pathway, was further overexpressed in strains S01, S02, and S03. With the resulting recombinant strains S04, S05 and S06, the yield of α-amyrin, lupeol and germanicol increased to 96.3, 91.6, and 38.7 mg/L, respectively. Therefore, this study constructed triterpenoid-producing platforms, which provided a theoretical and technical basis for the construction of S.cerevisiae pentacyclic triterpenoid acids cell factories with potential for industrial applications.
[1] POLLIER J, GOOSSENS A.Oleanolic acid [J].Phytochemistry, 2012, 77:10-15.
[2] WEI J T, LIU H Z, LIU M, et al.Oleanolic acid potentiates the antitumor activity of 5-fluorouracil in pancreatic cancer cells [J].Oncology Reports, 2012, 28(4):1 339-1 345.
[3] D′ABROSCA B, FIORENTINO A, MONACO P, et al.Annurcoic acid:A new antioxidant ursane triterpene from fruits of cv.Annurca apple [J].Food Chemistry, 2006, 98(2):285-290.
[4] HE X J, LIU R H.Triterpenoids isolated from apple peels have potent antiproliferative activity and may be partially responsible for apple′s anticancer activity [J].Journal of Agricultural and Food Chemistry, 2007, 55(11):4 366-4 370.
[5] BATOVSKA D I, TODOROVA I T, NEDELCHEVA D V, et al.Preliminary study on biomarkers for the fungal resistance in Vitis vinifera leaves [J].Journal of Plant Physiology, 2008, 165(8):791-795.
[6] FERNÁNDEZ M A, DE LAS HERAS B, GARCIA M D, et al.New insights into the mechanism of action of the anti-inflammatory triterpene lupeol [J].Journal of Pharmacy & Pharmacology, 2010, 53(11):1 533-1 539.
[7] SETZER W N, SETZER M C.Plant-derived triterpenoids as potential antineoplastic agents [J].Mini Reviews in Medicinal Chemistry, 2003, 3(6):540-556.
[8] SRISAWAT P, FUKUSHIMA E O, YASUMOTO S, et al.Identification of oxidosqualene cyclases from the medicinal legume tree Bauhinia forficata:A step toward discovering preponderant a-amyrin-producing activity [J].New Phytologist, 2019, 224(1):352-366.
[9] FACCHINI P J, BOHLMANN J, COVELLO P S, et al.Synthetic biosystems for the production of high-value plant metabolites [J].Trends in Biotechnology, 2012, 30(3):127-131.
[10] 张艳, 卢文玉.酿酒酵母细胞表达异源萜类化合物的研究进展[J].化工进展, 2014, 33(5):1 265-1 270.
ZHANG Y, LU W Y.Progress of heterologous expression of terpenes in Saccharomyces cerevisiae [J].Chemical Industry and Engineering Progress, 2014, 33(5):1 265-1 270.
[11] DAI Z B, LIU Y, ZHANG X N, et al.Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides [J].Metabolic Engineering, 2013, 20:146-156.
[12] 杨金玲, 高丽丽, 朱平.人参皂苷生物合成研究进展[J].药学学报, 2013, 48(2):170-178.
YANG J L, GAO L L, ZHU P.Advances in the biosynthesis research of ginsenosides [J].Acta Pharmaceutica Sinica, 2013, 48(2):170-178.
[13] PADDON C J, WESTFALL P J, PITERA D J, et al.High-level semi-synthetic production of the potent antimalarial artemisinin [J].Nature, 2013, 496(7 446):528-532.
[14] YU Y, CHANG P C, YU H, et al.Productive amyrin synthases for efficient α-amyrin synthesis in engineered Saccharomyces cerevisiae [J].ACS Synthetic Biology, 2018, 7(10):2 391-2 402.
[15] QIAO W B, LI C F, MOSONGO I, et al.Comparative transcriptome analysis identifies putative genes involved in steroid biosynthesis in Euphorbia tirucalli [J].Genes, 2018, 9(1):38.
[16] ZHANG G L, CAO Q, LIU J Z, et al.Refactoring β-amyrin synthesis in Saccharomyces cerevisiae [J].AIChE Journal, 2015, 61(10):3 172-3 179.
[17] WONG J, D′ESPAUX L, DEV I, et al.De novo synthesis of the sedative valerenic acid in Saccharomyces cerevisiae [J].Metabolic Engineering, 2018, 47:94-101.
[18] REIDER APEL A, D′ESPAUX L, WEHRS M, et al.A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae [J].Nucleic Acids Research, 2017, 45(1):496-508.
[19] 张学礼, 黄璐琦, 戴住波, 等.生产达玛二烯和原人参二醇的重组微生物及其构建方法:中国, 102925376A [P].2013-02-13.
ZHANG X L, HUANG L Q, DAI Z B, et al.Production of recombinant microorganism Darma diene and protopanaxadiol of its construction method:China, 102925376A [P].2013-02-13.
[20] LU C Z, ZHANG C B, ZHAO F L, et al.Biosynthesis of ursolic acid and oleanolic acid in Saccharomyces cerevisiae [J].AIChE Journal, 2018, 64(11):3 794-3 802.
[21] URANO E, ABLAN S D, MANDT R, et al.Alkyl amine bevirimat derivatives are potent and broadly active HIV-1 maturation inhibitors [J].Antimicrobial Agents and Chemotherapy, 2016, 60(1):190-197.
[22] ZHU M, WANG C X, SUN W T, et al.Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants [J].Metabolic Engineering, 2018, 45:43-50.
[23] HUANG L L, LI J, YE H C, et al.Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus [J].Planta, 2012, 236(5):1 571-1 581.
[24] MISRA R C, SHARMA S, SANDEEP, et al.Two CYP716A subfamily cytochrome P450 monooxygenases of sweet basil play similar but nonredundant roles in ursane-and oleanane-type pentacyclic triterpene biosynthesis[J].New Phytologist, 2017, 214(2):706-720.
[25] 朱明, 王彩霞, 李春.工程化酿酒酵母合成植物三萜类化合物[J].化工学报, 2015, 66(9):3 350-3 356.
ZHU M, WANG C X, LI C.Engineered Saccharomyces cerevisiae for biosynthesis of plant triterpenoids[J].CIESC Journal, 2015, 66(9):3 350-3 356.