生产与科研应用

通过发酵优化提高大肠杆菌生产L-半胱氨酸产量

  • 张博 ,
  • 史永吉 ,
  • 杨辉 ,
  • 吴梓丹 ,
  • 陈开 ,
  • 蔡雪 ,
  • 柳志强 ,
  • 郑裕国
展开
  • (浙江工业大学 生物工程学院,浙江 杭州,310023)
博士,副教授(柳志强教授为通讯作者,E-mail:microliu@zjut.edu.cn)

收稿日期: 2021-01-20

  修回日期: 2021-02-27

  网络出版日期: 2021-10-18

基金资助

国家重点基础研究发展计划(973计划)(2018YFA0901400);国家自然科学基金(32070099;31971342)

Enhancement of L-cysteine production in Escherichia coli through fermentation optimization

  • ZHANG Bo ,
  • SHI Yongji ,
  • YANG Hui ,
  • WU Zidan ,
  • CHEN Kai ,
  • CAI Xue ,
  • LIU Zhiqiang ,
  • ZHENG Yuguo
Expand
  • (College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310023, China)

Received date: 2021-01-20

  Revised date: 2021-02-27

  Online published: 2021-10-18

摘要

该研究为提高菌株L-半胱氨酸合成能力,首先在摇瓶发酵中利用响应面分析方法对培养基组分进行了优化;其次,结合甜菜碱、氨基酸等物质的添加,在2 L发酵罐中进行了发酵放大优化。实验确定了较优的培养基成分,为葡萄糖(42.69 g/L)、硫酸铵(7.77 g/L)、酵母粉(6.53 g/L)、硫代硫酸钠(6.22 g/L);优化后L-半胱氨酸的产量显著提升,摇瓶发酵达到3.85 g/L,较优化前提高了169%。2 L发酵罐放大试验结果表明,结合外源物质添加,发酵47 h后L-半胱氨酸产量可达10.25 g/L。以上结果为后续L-半胱氨酸的工业化发酵生产奠定了基础。

本文引用格式

张博 , 史永吉 , 杨辉 , 吴梓丹 , 陈开 , 蔡雪 , 柳志强 , 郑裕国 . 通过发酵优化提高大肠杆菌生产L-半胱氨酸产量[J]. 食品与发酵工业, 2021 , 47(18) : 175 -180 . DOI: 10.13995/j.cnki.11-1802/ts.026837

Abstract

Cysteine is an important amino acid with active sulfhydryl group, which plays vital role in cellular physiological functions. In this study, to improve the L-cysteine production of the Escherichia coli MCYS-7, optimization of the culture medium was firstly performed by response surface methodology in flask fermentation. With a exogenous addition of betaine, amino acids and other chemicals, the fermentation process optimization and scale-up were carried out in 2 L bioreactors. The optimum culture medium was determined to be glucose (42.69 g/L), ammonium sulfate (7.77 g/L), yeast powder (6.53 g/L), sodium thiosulfate (6.22 g/L). In the flask fermentation after medium optimization, the titer of L-cysteine was significant improved to 3.85 g/L, which was increased by 169% compared with that before optimization. The scale-up results in the 2 L bioreactors revealed that, with the addition of exogenous chemical, the titer for L-cysteine production could reach 10.25 g/L after 47 h of fermentation. Our results laid a foundation for the L-cysteine production through microbial fermentation in industrial scale.

参考文献

[1] TAKAGI H, OHTSU I.L-Cysteine metabolism and fermentation in microorganisms[J].Advances in Biochemical Engineering/Biotechnology, 2017, 159: 129-151.
[2] JESSICA B B, SJOERD V D P, ARSHAG D M, et al.Spatial and temporal alterations in protein structure by EGF regulate cryptic cysteine oxidation[J].Science Signaling, 2020, 13(615):7 315.
[3] BYRNE D P, SHRESTHA S, GALLER M, et al.Aurora A regulation by reversible cysteine oxidation reveals evolutionarily conserved redox control of Ser/Thr protein kinase activity[J].Science Signaling, 2020, 13(639):2 713.
[4] HICKS J L, MULLHOLLAND C V.Cysteine biosynthesis in Neisseria species[J].Microbiology, 2018, 164(12):1 471-1 480.
[5] 张礼, 孙堆, 王晓,等.半胱氨酸参与生物体重金属抗性的研究进展[J].生物技术通报, 2017, 33(5):26-33.
ZHANG L, SUN D, WANG X, et al.Research progress on cysteine participation in heavy metal resistance in organism[J].Biotechnology Bulletin, 2017, 33(5):26-33.
[6] NAKATANI T, OHTSU I, NONAKA G, et al.Enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from S-sulfocysteine increases L-cysteine production in Escherichia coli[J].Microbial Cell Factories, 2012, 11(1):62.
[7] WEI L, WANG H, XU N, et al.Metabolic engineering of Corynebacterium glutamicum for L-cysteine production[J].Applied Microbiology and Biotechnology, 2019, 103(3):1 325-1 338.
[8] TAKUMI K, ZIYATDINOV M K, SAMSONOV V, et al.Fermentative production of cysteine by Pantoea ananatis[J].Applied and Environmental Microbiology,2017, 83(5):e02502-e02516.
[9] WU D, FENG M, WANG Z X, et al.Molecular and biochemical characterization of key enzymes in the cysteine and serine metabolic pathways of Acanthamoeba castellanii[J].Parasites & Vectors, 2018, 11(1):604.
[10] KREDICH N M, TOMKINS G M.The enzymic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium[J].The Journal of Biological Chemistry, 1966, 241(21):4 955-4 965.
[11] KAWANO Y, ONISHI F, SHIROYAMA M, et al.Improved fermentative L-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli[J].Applied Microbiology and Biotechnology, 2017, 101(18):6 879-6 889.
[12] KAWANO Y, OHTSU I, TAMAKOSHI A, et al.Involvement of the yciW gene in L-cysteine and L-methionine metabolism in Escherichia coli[J].Journal of Bioscience and Bioengineering, 2015, 119(3):310-313.
[13] KAWANO Y, OHTSU I, TAKUMI K, et al.Enhancement of L-cysteine production by disruption of yciW in Escherichia coli[J].Journal of Bioscience and Bioengineering, 2015, 119(2):176-179.
[14] NONAKA G, TAKUMI K.Cysteine degradation gene yhaM, encoding cysteine desulfidase, serves as a genetic engineering target to improve cysteine production in Escherichia coli[J].AMB Express, 2017, 7(1):1-9.
[15] YAMAZAKI S, TAKEI K, NONAKA G.YdjN encodes an S-sulfocysteine transporter required by Escherichia coli for growth on S-sulfocysteine as a sulfur source[J].FEMS Microbiology Letters, 2016, 363(17):185.
[16] LIU H, FANG G C, WU H, et al.L-Cysteine production in Escherichia coli based on rational metabolic engineering and modular strategy[J].Biotechnology Journal, 2018, 13(5):e1700695.
[17] LIU H, HOU Y H, WANG Y, et al.Enhancement of sulfur conversion rate in the production of L-cysteine by engineered Escherichia coli[J].Journal of Agricultural and Food Chemistry, 2020, 68(1):250-257.
[18] LIU H, WANG Y, HOU Y H, et al.Fitness of chassis cells and metabolic pathways for L-cysteine overproduction in Escherichia coli[J]. Journal of Agricultural and Food Chemistry, 2020, 68(50):14 928-14 937.
[19] DINARVAND M, REZAEE M, MASOMIAN M, et al.Effect of C/N ratio and media optimization through response surface methodology on simultaneous productions of intra- and extracellular inulinase and invertase from aspergillus niger ATCC 20611[J].BioMed Research International, 2013, 2013(43):508 968.
[20] 宋思圆, 苏平, 王丽娟,等.响应面试验优化超声提取黄秋葵花果胶多糖工艺及其体外抗氧化活性[J].食品科学, 2017, 38(2):283-289.
SONG S Y, SU P, WANG L J, et al.Optimization of ultrasonic extraction technology of pectin polysaccharide from okra flower and its in vitro antioxidant activity by response surface test[J].Food Science, 2017, 38(2):283-289.
[21] MILLER G L.Use of dinitrosalicylic acid reagent for determination of reducing sugar[J].Analytical Chemistry, 1959, 31(3):426-428.
[22] SHI T, TANG T, QIAN K, et al.High-performance liquid chromatographic method for determination of amino acids by precolumn derivatization with 4-chloro-3,5-dinitrobenzotrifluoride[J].Analytica Chimica Acta, 2009,654(2):154-161.
[23] 周丽,邓璨,崔文璟,等.温度调节基因开关调控大肠杆菌发酵合成L-丙氨酸[J].微生物学通报, 2015, 42(11):2 272-2 281.
ZHOU L, DENG C, CUI W J, et al.Temperature-regulated gene switch regulates fermentation and synthesis of L-alanine by Escherichia coli[J].Microbiology China, 2015, 42(11):2 272-2 281.
[24] NIMBALKAR P R, KHEDKAR M A, KULKARNI R K, et al.Strategic intensification in butanol production by exogenous amino acid supplementation:Fermentation kinetics and thermodynamic studies[J].Bioresource Technology, 2019, 288:121521.
[25] LU Z Y, ZHONG J J.Effect of furfural addition on validamycin-a production in fermentation of Streptomyces hygroscopicus 5008[J].Process Biochemistry, 2020, 92:43-48.
[26] CHEN T H H, MURATA N.Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes[J].Current Opinion in Plant Biology, 2002, 5(3):250-257.
[27] 张超,栾兴社,朱明晟,等.各种氨基酸对枯草芽孢杆菌生产聚谷氨酸的促进作用[J].食品工业, 2013, 34(1):119-122.
ZHANG C, LUAN X S, ZHU M S, et al.The promoting effect of various amino acids on the production of polyglutamic acid by Bacillus subtilis[J].The Food Industry, 2013, 34(1):119-122.
[28] 王大慧, 聂敏, 卫功元.基于两阶段氨基酸添加的谷胱甘肽发酵高产方法[J].食品科学, 2017, 38(22):22-27.
WANG D H, NIE M, WEI G Y.Glutathione fermentation high-yield method based on two-stage amino acid addition[J].Food Science, 2017, 38(22):22-27.
文章导航

/